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Abstract—Autonomous vehicles are complex systems that are
challenging to test and debug. A requirements-driven approach
to the development process can decrease the resources required
to design and test these systems, while simultaneously increasing
the reliability. We present a testing framework that uses signal
temporal logic (STL), which is a precise and unambiguous re-
quirements language. Our framework evaluates test cases against
the STL formulae and additionally uses the requirements to
automatically identify cases that fail to satisfy the requirements.
One of the key features of our tool is the support for machine
learning (ML) components in the system design, such as deep
neural networks. The framework allows evaluation of the control
algorithms, including the ML components, and it also includes
models of CCD camera, lidar, and radar sensors, as well as the
vehicle environment. We use multiple methods to generate test
cases, including covering arrays, which is an efficient method
to search discrete variable spaces. The resulting test cases can
be used to debug the controller design by identifying controller
behaviors that do not satisfy requirements. The test cases can
also enhance the testing phase of development by identifying
critical corner cases that correspond to the limits of the system’s
allowed behaviors. We present three STL requirements for an
autonomous vehicle system, which capture both component-level
and system-level behaviors. Additionally, we present three driving
scenarios and demonstrate how our requirements-driven testing
framework can be used to identify critical system behaviors,
which can be used to support the development process.

I. INTRODUCTION

Autonomous driving systems are in a stage of rapid research
and development spanning a broad range of maturity from
simulations to on-road testing and deployment. They are
expected to have a significant impact on the vehicle market
and the broader economy and society in the future.

Testing of highly automated and autonomous driving sys-
tems is also an area of active research. Both governmental
and non-governmental organizations are grappling with the
unique requirements of these new, highly complex systems,
as they have to operate safely and reliably in diverse driving
environments. Government and industry sponsored partner-
ships have produced a number of guiding documents and
clarifications, such as NHTSA [1], SAE [2], CAMP [3], NCAP
[4], PEGASUS [5]. The research community has also been
contributing to the development of methodologies for testing
automated driving systems.

Stellet et al. [6] surveyed existing approaches to testing
such as simulation-only, X-in-the-loop and augmented reality
approaches, as well as test criteria and metrics (see also
[7]). Koopman and Wagner identified challenges of testing
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and proposed potential solutions, such as fault injection, as
a way to perform more efficient edge case testing [8]. The
publications [9] and [10] provide in-depth discussions on
the challenges of safety validation for autonomous vehicles,
arguing that virtual testing should be the main target for both
methodological and economic reasons.

No universally agreed upon testing or verification methods
have yet arisen for autonomous driving systems. One reason
is that the current autonomous systems architectures usually
include some Machine Learning (ML) components, such as
Deep Neural Networks (DNNs), which are notoriously difficult
to test and verify. We present a framework for Simulation-
based Adversarial Testing of Autonomous Vehicles (Sim-
ATAV), which can be used to check closed-loop properties of
autonomous driving systems that include ML components. We
describe a testing methodology, based on a test case generation
method, called covering arrays, and requirement falsification
methods to automatically identify problematic test scenarios.
The resulting framework can be used to increase the reliability
of autonomous driving systems.

Autonomous driving system designs often use ML compo-
nents such as DNNs to classify objects within CCD images
and to determine their positions relative to the vehicle, a
process known as object detection and classification [11].
Other designs use Neural Networks (NNs) to perform end-to-
end control of the vehicle, meaning that the NN takes in the
image data and outputs actuator commands, without explicitly
performing an intermediate object detection step [12], [13],
[14]. Still other approaches use end-to-end learning to do
intermediate decisions like risk assessment [15].

ML system components are problematic from an analysis
perspective, as it is difficult or impossible to characterize all
of the behaviors of these components under all circumstances.
One reason is that the complexity of these systems can be
very high in terms of the number of parameters. For example,
AlexNet [16], a pre-trained DNN that is used for classification
of CCD images, has 60 million parameters. Another reason for
the difficulty in characterizing behaviors of ML components
is that the parameters are learned based on training data. In
other words, characterizing ML behaviors is, in some ways, as
difficult as the task of characterizing the training data. Again
using the AlexNet example, the number of training images
used was 1.2 million. While a strength of DNNs is their ability
to generalize from training data; the challenge for analysis is
that we do not understand well how they generalize for all
possible cases.

There has been significant interest recently on verification
and testing for ML components (see Sec. II). For example,
adversarial testing approaches seek to identify perturbations
in image data that result in misclassifications. By contrast,



our work focuses on methods to determine perturbations in
the configuration of a testing scenario, meaning that we seek
to find scenarios that lead to unexpected behaviors, such as
misclassifications and ultimately vehicle collisions. The frame-
work that we present allows this type of testing in a virtual
environment. By utilizing advanced 3D models and image
rendering tools, such as the ones used in game engines or
film studios, the gap between testing in a virtual environment
and the real world can be minimized.

Most of the previous work to test and verify systems
with ML components focuses only on the ML components
themselves, without consideration of the closed-loop behavior
of the system. For autonomous driving applications, we remark
that the ultimate goal is to evaluate the closed-loop system
performance, and hence, any testing methods used to evaluate
such systems should support this goal.

The closed-loop nature of a typical autonomous driving
system can be described as follows. A perception system
processes data gathered from various sensing devices, such
as cameras, lidar, and radar. The output of the perception
system is an estimation of the principal (ego) vehicle’s position
with respect to external obstacles (e.g., other vehicles, called
agent vehicles, and pedestrians). A path planning algorithm
uses the output of the perception system to produce a short-
term plan for how the ego vehicle should behave. A tracking
controller then takes the output of the path planner and
produces actuation outputs, such as accelerator, braking, and
steering commands. The actuation commands affect the vehi-
cle’s interaction with the environment. The iterative process
of sensing, processing, and actuating is what we refer to as
closed-loop behavior.

An earlier version of this work appeared in [17]. The
contributions of that work can be summarized as follows. In
[17], we provided a new algorithm to perform falsification of
formal requirements for an autonomous vehicle in a closed-
loop with the perception system, which includes an efficient
means of searching over discrete and continuous parameter
spaces. The method represents a new way to do adversarial
testing in scenario configuration space, as opposed to the
usual method, which considers adversaries in image space.
Additionally, we demonstrated a new way to characterize prob-
lems with perception systems in configuration space. Lastly,
we extended the software testing theory of covering arrays
to closed-loop Cyber-Physical System (CPS) applications that
have embedded ML algorithms.

The present paper provides the following contributions that
are in addition to those from [17].
• We add models of lidar and radar sensors and include

sensor fusion algorithms, and we demonstrate how the
requirements-based testing framework we propose can be
used to automate the search for specific types of fault
cases involving sensor interactions.

• We provide requirements for both component-level and
system-level behaviors, and we show how to automate
the identification of behaviors where component-level
failures lead to system-level failures. An example of the
kind of analysis this allows is automatically finding cases
where a sensor failure leads to a collision case.

• We include a model of agent visibility to various sensors
and include this notion in the requirements that we
consider. This provides a way to reason about how the
system should behave, based on whether agents are or
are not visible, including the ability to reason about the
temporal aspects of agent visibility. For example, we
can use this feature to test the requirement that within
1 second after an agent becomes visible to the lidar
sensor, the perception system should correctly classify the
agent. This allows us to automate the search for behaviors
related to temporal aspects of sensor behaviors in the
context of a realistic driving scenario.

• We demonstrate the ability to falsify properties by ad-
versarially searching over agent trajectories. This permits
the use of our requirements-driven search-based approach
over a broad class of agent behaviors, which allows us
to automatically identify corner cases that are difficult to
find using traditional simulation-based techniques.

II. RELATED WORK

Testing and evaluation methods for Autonomous1 Vehicles
(AVs) could be categorized into three major classes: (1) model
based, (2) data-driven, and (3) scenario based. Scenario-based
approaches utilize accident reports and driving conditions that
are easily identifiable as challenging, producing specific test
scenarios to be executed either in the real world or in a
simulation environment. For example, Euro NCAP [4] and
DOT [18] provide such scenarios. Data-driven approaches, on
the other hand, typically utilize driving data [19] to generate
probabilistic models of human drivers. Such models are then
used for risk assessment and rare event sampling for AV
algorithms under specific driving scenarios [20].

The aforementioned testing methods are important and
necessary before AV deployment, but they cannot help with
design exploration and automated fault detection at early
development stages. Such problems are addressed by model-
based verification [21], [22], model based test generation [23],
[24], [25], [26], [27], [28], or a combination thereof [29],
[30]. It is important to also highlight that these methods
typically ignore or use simple models to abstract away prox-
imity sensors and, especially, the vision systems. However,
ignoring sensors or using simplified sensing models may be
a dangerously simplifying assumption since it ignores the
complex interactions between the dynamics of the vehicle and
the sensors. For example, the effective sensing range of a
sensor platform mounted on the roof of a vehicle is affected
when the vehicle makes hard turns.

In addition, vision-based perception systems have become
an integral component of the sensor platform of AVs, and
in many cases, they constitute the only perception system.
Currently, the winning algorithmic technology for image pro-
cessing systems is utilizing Deep Neural Networks (DNN). For
instance, by 2011, the DNN architecture proposed in [31] was
already capable of classifying pre-segmented images of traffic

1We utilize the more general term “autonomous” as opposed to a more
restricted “automated” since our methods could potentially apply to all levels
of autonomy.



Fig. 1: Lidar reflection points versus distance to various pedes-
trian and pedestrian-like targets. Lines of expected number of
points E(h,w) are also shown.

signs with better accuracy than humans (99.46% vs 99.22%).
Since then, there has been substantial progress with DNNs
performing both segmentation and classification [32], [33].
Yet, in spite of the multiple impressive results using DNN,
it is still also easy to devise methods that can produce (so-
called adversarial) images that will fool them [34], [35], [36].

The latter (negative) result raises two important questions:
(1) can we still generate adversarial inputs for DNN when
we manipulate the physical properties and trajectories of the
objects in the environment of the AV, and (2) how does the
DNN accuracy affect the system level properties of an AV, that
is, its functional safety? Exhaustive verification methods for
NN in the loop are still in their infancy [37], and they cannot
handle AV with DNN components in the loop. To address
the two questions above, several model-based test generation
methods have been proposed [38], [39], [40], [17]. The pro-
cedure described in [38], [39] analyzes the performance of
the perception system using static images to identify candidate
counterexamples, which are then checked using simulations of
the closed-loop system to determine whether the AV exhibits
unsafe behaviors. On the other hand, [40], [17] develop
methods that directly search for unsafe behaviors of the closed-
loop system by defining a cost function on the closed-loop
behaviors. The differences between [40] and [17] are primarily
on the search methods, the simulation environments, and
the AVs, with [17] providing a more efficient method for
combinatorial search.

In this extended version of [17], we take the system-level
adversarial test generation methods for AV one step further.
We demonstrate that our framework [17] can be extended for
test generation for AV with multi-sensor systems as opposed
to vision-only perception systems. Moreover, we demonstrate
the importance and effectiveness of test generation methods
guided by system-level requirements as well as perception-
level requirements.

Using our framework, we can formalize and test against
requirements on the sensor performance, in the context of a
driving scenario. For example, the lidar’s point cloud density
drops significantly with the distance to the target object, for
example, a pedestrian; Figure 1 illustrates this point with
experimental results showing lidar data point density as a

function of object distance. Similar to this aspect of lidar
behavior, the pixel count of a CCD camera would also decrease
dramatically with the distance if it were to be used for pedes-
trian detection, since the area of an observed object decreases
as the square of the distance to the object. This may complicate
testing for long-range observation conditions. Our framework
supports testing these aspects of sensor performance.

III. PRELIMINARIES

This section presents the setting used to describe the testing
procedures performed with our framework. The purpose of
our framework is to provide a mechanism to test, evaluate,
and improve on an autonomous driving system design. To
do this, we use a simulation environment that incorporates
models of a vehicle (called the ego vehicle), a perception
system, which is used to estimate the state of the vehicle
with respect to other objects in its environment, a controller,
which makes decisions about how the vehicle will behave, and
the environment in which the ego vehicle is deployed. The
environment model contains representations of a wide variety
of objects that can interact with the ego vehicle, including
roads, buildings, pedestrians, and other vehicles (called agent
vehicles). The behaviors of the system are determined by the
evolution of the model states over time, which we compute
using a simulator.

Formally, the framework implements a model of the system,
which is a tuple M = (X ,U ,P, sim), where X is a set of
system states, U is a set of inputs, and sim is a simulation
function sim : X × U × P × T → X , where T is a discrete
set of sample times t0, t1, . . . , tN , with ti < ti+1. P = W ×
V is a combination of continuous-valued and discrete-valued
parameters, where W =W1 × · · · ×WW and each Wi ⊆ R,
and V = V1 × · · · × VV and each Vi is some finite domain,
such as Boolean or a finite list of agent car colors.

Given x ∈ X , x̂ = sim(x,u,p, t) is the state reached
starting from state x after time t ∈ T under input u ∈ U and
parameter value p ∈ P . We call a sequence

U = (u0, t0)(u1, t1) · · · (uN , tN ),

where each ui ∈ U and ti ∈ T , an input trace of M . Given a
model M , an input trace of M , U , and a p ∈ P , a simulation
trace of M under input U and parameters p is a sequence

T = (x0,u0, t0)(x1,u1, t1) · · · (xN ,uN , tN ),

where sim(xi−1,ui−1,p, ti−1) = xi for each 1 ≤
i ≤ N . For a given simulation trace T , we call X =
(x0, t0)(x1, t1) · · · (xN , tN ) the state trace. We denote the set
of all simulation traces of M by L(M).

A. Signal Temporal Logic

Signal Temporal Logic (STL) was introduced as an exten-
sion to Metric Temporal Logic (MTL) to reason about real-
time properties of signals (simulation traces) (for an overview
see [41]). STL formulae are built over predicates on the
variables of a signal using combinations of Boolean and
temporal operators. The temporal operators include eventually
(♦I), always (�I) and until (UI), where I is a time interval



that encodes timing constraints. The boolean operators include
conjunction ∧, disjunction ∨, negation ¬, and implies =⇒ .

In this work, we interpret STL formulas over the observable
simulation traces of a given system. STL specifications can
describe the usual properties of interest in system design such
as (bounded time) reachability, e.g., between time 1.2 and 5
(not including), x should drop below −10: ♦[1.2,5) (x ≤ −10),
and safety, e.g., after time 2, x should always be greater
than 10: �[2,+∞)(x ≥ 10). STL can capture sequences of
events, e.g., ♦I1(π1 ∧ ♦I2(π2 ∧ ♦I3π3)), which states that
π1 should become true at some time in the time interval
I1 followed by at least one event satisfying π2 within time
I1 ⊕ I2, followed in turn by a satisfying event for π3 in the
time interval I1⊕I2⊕I3. Here, ⊕ is the Minkowski sum and
πi are predicates over signal variables, e.g., π1 ≡ x1 + 3x2 ≤
4.5. Another example of expressible requirements in STL
are infinite occurring behaviors, e.g., reactive behaviors :
�(π1 → ♦[0,2]π2), which states that whenever π1 is satisfied,
then within 2 time units π2 should also become true.

Informally speaking, we allow predicate expressions to
capture arbitrary constraints over the state variables, inputs,
and parameters of the system. More formally, we assume
that predicates π are expressions built using the grammar
π ::= f(x,u,p) ≥ c | ¬π1 | (π) | π1 ∨ π2 | π1 ∧ π2,
where f is a function and c is a constant in R. In other
words, each predicate π represents a subset in the space
X × U × P . In the following, we represent the set that
corresponds to the predicate π using the notation O(π). For
example, if π = (x1 ≤ −10) ∨ (x1 + x2 ≥ 10) and we
represent by xi the i-th component of the vector x, then
O(π) = (∞,−10]× R ∪ {x ∈ R2 | x1 + x2 ≥ 10}.

Definition 1 (STL Syntax): Assume Π is the set of predicates
and I is any non-empty connected interval of R≥0. The set of
all well-formed STL formulas is inductively defined as ϕ ::=
> | π | ¬φ | φ1 ∨ φ2 | © φ | φ1UIφ2, where π is a predicate,
> is true, © is Next, and UI is the Until operator.

In this work, we will be using discrete time semantics of
STL since we would like to be able to reason about the timing
of samples and define events as falling or raising Boolean
values, using the next time operator (©). For example, the
formula π ∧ ¬π expresses a falling value event. For STL for-
mulas ψ, φ, we define ψ∧φ ≡ ¬(¬ψ∨¬φ), ⊥ ≡ ¬> (False),
ψ → φ ≡ ¬ψ ∨ φ (ψ Implies φ), ♦Iψ ≡ >UIψ (Eventually
ψ), �Iψ ≡ ¬♦I¬ψ (Always ψ), and ψRIφ ≡ ¬(¬ψUI¬φ)
(ψ Releases φ), using syntactic manipulation.

In our previous work [42], we proposed robust semantics
for STL formulas. Robust semantics (or robustness metrics)
provide a real-valued measure of satisfaction of a formula
by a trace, in contrast to the Boolean semantics that just
provide a true or false valuation. In more detail, given a trace
T of the system, its robustness w.r.t. a temporal property ϕ,
denoted [[ϕ]]d(T ) yields a positive value if T satisfies ϕ and
a negative value otherwise. Moreover, if the trace T satisfies
the specification φ, then the robust semantics evaluate to the
radius of a neighborhood such that any other trace that remains
within that neighborhood also satisfies the same specification.
The same holds for traces that do not satisfy φ.

Definition 2 (STL Robust Semantics): Given a metric d,

trace T , and O : Π → 2X×U×P , the robust semantics of any
formula φ w.r.t T at time instance i ∈ N is defined as:

[[>]]d(T, i) := +∞

[[π]]d(T, i) :=


− inf{d((xi,ui,pi),y) | y ∈ O(π)}

if (xi,ui,pi) 6∈ O(π)

inf{d((xi,ui,pi),y) | y ∈ O(π)}
if (xi,ui,pi) ∈ O(π)

[[¬φ]]d(T, i) :=− [[φ]]d(T, i)

[[φ1 ∨ φ2]]d(T, i) := max
(
[[φ1]]d(T, i), [[φ2]]d(T, i)

)
[[©φ]]d(T, i) :=

{
[[φ]]d(T, i+ 1) if i+ 1 ∈ N
−∞ otherwise

[[φ1UIφ2]]d(T, i) := max
j s.t. (tj−ti)∈I

(
min

(
[[φ2]]d(T, j),

min
i≤k<j

[[φ1]]d(T, k)
))

A trace T satisfies an STL formula φ (denoted by T |= φ),
if [[φ]]d(T, 0) > 0. On the other hand, a trace T ′ falsifies φ
(denoted by T ′ 6|= φ), if [[φ]]d(T ′, 0) < 0. An overview of the
algorithms that can be used to compute [[ϕ]]d is provided in
[41].

Example 3.1:
In order to visualize the specification robustness for an

example relevant to this paper, we trained an NN to predict the
future position of other vehicles approaching an intersection,
similar to the work presented in [15]. Figure 2 shows the
scenario under consideration. The ego vehicle is on the x1 axis
and it uses the trained NN in a collision avoidance controller.
This simple NN predictor uses the positions of the vehicles
as well as the velocity of the adversarial agent (x2 axis).
We consider the requirement that the two vehicles should not
be in the intersection at the same time: ϕ = �(¬(−0.1 ≤
x1 ≤ 0.1) ∧ ¬(−0.1 ≤ x2 ≤ 0.1)). In Fig. 3, we present the
robustness landscape over the set of initial positions for the
two vehicles. It can be observed that the NN controller does
a good job avoiding the collisions since we do not have any
negative robustness values. Our goal is to use the robustness
function to find system behaviors that violate our requirements
as discussed in the next section.

B. Robustness-Guided Model Checking (RGMC)

The goal of a model checking algorithm is to ensure that all
traces satisfy the requirement. The robustness metric can be
viewed as a fitness function that indicates the degree to which
individual executions of the system satisfy the requirement ϕ,
with positive values indicating that the execution satisfies ϕ.
Therefore, for a given system M and a given requirement ϕ,
the model checking problem is to ensure that for all T ∈
L(M), [[ϕ]]d(T ) > 0.

Let ϕ be a given STL property that the system is expected to
satisfy. The robustness metric [[ϕ]]d maps each simulation trace
T to a real number r. Ideally, for the STL verification problem,
we would like to prove that infy∈L(Σ)Rϕ(y) > ε > 0 where
ε is a desired robustness threshold.
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Fig. 2: Simple intersection collision avoidance: an NN has
been trained to predict the future position of the vehicles and
it is used in the loop for a simple braking controller for the
ego vehicle.
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Fig. 3: The resulting robustness landscape for the specification
in Example 3.1.

C. Falsification and Critical System Behaviors

In this work, we focus on the task of identifying criti-
cal system behaviors, including falsifying traces. To identify
falsifying system behaviors, we leverage existing work on
falsification, which is the process of identifying system traces
T that do not satisfy ϕ. For the STL falsification problem,
falsification attempts to solve the problem: Find T ∈ L(Σ)
s.t. [[ϕ]]d(T ) < 0. This is done using best effort solutions to
the following optimization problem:

T ? = arg min
T∈L(Σ)

[[ϕ]]d(T ). (1)

If [[ϕ]]d(T ?) < 0, then a counterexample (adversarial sample)
has been identified, which can be used for debugging or for
training. In order to solve this non-linear non-convex opti-
mization problem, a number of stochastic search optimization
methods can be applied (e.g., [45] – for an overview see [46],
[47]). We leverage existing falsification methods to identify
falsifying examples the autonomous driving system.

D. Covering Arrays

In software systems, there can often be a large number of
discrete input parameters that affect the execution path of a
program and its outputs. The possible combinations of input
values can grow exponentially with the number of parameters.
Hence, exhaustive testing on the input space becomes imprac-
tical for fairly large systems. A fault in such a system with
k parameters may be caused by a specific combination of t

parameters, where 1 ≤ t ≤ k. One best-effort approach to
testing is to make sure that all combinations of any t-sized
subset (i.e., all t-way combinations) of the inputs are tested.

A covering array is a minimal number of test cases such
that any t-way combination of test parameters exist in the
list [48]. Covering arrays are generated using optimization-
based algorithms with the goal of minimizing the number of
test cases. We denote a t-way covering array on k parameters
by CA(t, k, (v1, ..., vk)), where vi is the number of possible
values for the ith parameter. The size of the covering array
increases with increasing t, and it becomes an exhaustive list
of all combinations when t = k. Here, t is considered as the
strength of the covering array. In practice, t can be chosen such
that the generated tests fit into the testing budget. Empirical
studies on real-world examples show that more than 90 percent
of the software failures can be found by testing 2 to 4-way
combinations of inputs [49].

Despite the t-way combinatorial coverage guaranteed by
covering arrays, a fault in the system possibly may arise as
a result of a combination of a number of parameters larger
than t. Hence, covering arrays are typically used to supplement
additional testing techniques, like uniform random testing. We
consider that because of the nature of the training data or
the network structure, NN-based object detection algorithms
may be sensitive to a certain combination of properties of the
objects in the scene. Figure 4 shows outputs of a DNN-based
object detection and classification algorithm for 4 different
combinations of vehicle type, vehicle color and pedestrian
pants color while all other parameters like position and orien-
tation of the objects are the same. In a comparison between
configurations (a) and (b), the vehicle type does not change
but the vehicle and pedestrian pants colors change from blue
to white. While both the car and the pedestrian are detected
in configuration (a), the pedestrian is detected but the car is
not detected in configuration (b); however, in a comparison
between configurations (b) and (d), if we fix the vehicle and
pedestrian pants colors to be white but change the vehicle type,
then the car is detected but the pedestrian is not detected. We
can also see that the size of the detection box is different
between configurations (c) and (d), for which the vehicle type
is the same but the vehicle and pedestrian pants colors are
different. Our observation is that the characterization of the
errors is generally not as simple as saying that all white colored
cars are not detected. Instead, the errors arise from some
combination of subsets of discrete parameters. Because of this
combinatorial aspect of the problem, covering arrays may be a
good fit to test DNN-based object detection and classification
algorithms. In Sec. V, we describe how Sim-ATAV combines
covering arrays to explore discrete and discretized parameters
with falsification on continuous parameters.

IV. REQUIREMENTS

In this section, we provide five STL requirements intended
for the autonomous driving system. Each requirement is used
to target specific aspects of safety and performance. Also, we
describe how analysis results related to each of the require-
ments can be used to enhance either the controller design or
testing phases of the development process.
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Fig. 4: Specific configurations impacting DNN performance.

A. STL Requirements

The following describes each of the requirements that
we use in the sequel to evaluate the autonomous driving
system design with our virtual framework. We provide these
requirements to illustrate how STL can be used to describe
four different types of behavior expectations for an automated
driving system: system-level safety, subsystem-level perfor-
mance, subsystem-to-system safety, and system-level perfor-
mance (driving comfort) requirements.

Requirement R1: Vehicle should not collide with an
object.

This requirement is an example of a system-level safety
requirement. It is used to ensure that the ego vehicle does not
collide with any object in the environment. Behaviors that do
not satisfy this requirement correspond to unsafe performance
from the autonomous vehicle. These cases are valuable to
identify in simulation, as they can be communicated back to
the control designers so that the control algorithms can be
improved.

The following provides the STL requirement.

R1i = �(¬πi,coll)

where
πi,coll = dist(i, ego) < εdist

In the above specification, i corresponds to an object in
the environment, such as an agent vehicle or a pedestrian.
dist(i, ego) gives the minimum Euclidean distance between
the boundaries of the Ego vehicle and the boundaries of
object i. The specification basically indicates that the Ego
vehicle should not collide with object i.

In practice, we consider a unique requirement for each
object in the environment. When the object we are considering
is clear from the context, we drop the index i and refer to the
requirement R1.

Requirement R2: Sensor should detect visible obstacles.
This requirement is an example of a subsystem-level re-

quirement; this particular example can be considered as a
requirement on the sensor or perception subsystems. The
requirement indicates that the perception system or a specific
sensor should not fail to detect an object for an excessive
amount of time.

The requirement is as follows.

R2i,s = �
(
(W (i, s) ∧ ¬D(i, s)) =⇒
♦[0,t1](D(i, s) ∨ ¬W (i, s))

)
Here, we use W (i, s) to mean that object i is phys-
ically visible to sensor s. For our framework, s ∈
{CCD, lidar, radar, combined}, where combined represents
the total perception system, which is a fusion of available
sensors. Function D(i, s) evaluates to true when sensor s
detects object i.

A description of this requirement in natural language could
be “it is always true that for any time when object i is visible
and not detected by sensor s, there exists an instant, within 0
to t1 seconds, that object i is either detected or invisible to
the sensor”.

When the object i and sensor s are clear from the context,
we drop the indices and refer to the requirement R2.

Requirement R3: Localization error should not be too
high for too long.

This requirement is another sensor-level requirement and
specifies that the localization of an object that is based on a
particular sensor should provide sufficient accuracy, within an
adequate time after the object becomes visible to the sensor.

The following is the requirement.

R3i,s =�
(
(W (i, s) ∧ (¬D(i, s) ∨ E(i, s) > εerr)) =⇒

♦[0,t1](¬W (i, s) ∨ (D(i, s) ∧ E(i, s) < εerr))
)

In the requirement, E(i, s) is the difference between object i’s
location and its location as estimated using information from
sensor s. Constant εerr is a threshold on the acceptable amount
of error between the actual position of i and its estimated
position.

To understand the requirement, consider the situation where
either an object is not detected (i.e., ¬D(i, s)) or there is a
large error in the localization of the object (i.e., E(i, s) >
εerr), and call this a case of “poor detection” of the object.
Then we can read the requirement as follows: “it is always
true that whenever object i is visible to sensor s and is poorly
detected by sensor s, there exists an instant, within a time
period of 0 to t1 seconds, that either object i is invisible to
sensor s or the object is detected and the localization error is
small, as computed using information from sensor s”.

This requirement basically limits the amount of time the
sensor error can be greater than a given threshold. When the
object i and sensor s are clear from the context, we drop the
indices and refer to the requirement R3.

Requirement R4: A sensor-related fault should not lead
to a system-level fault.

This is an example of a subsystem-to-system requirement.
This requirement relates sensor-level behaviors to system-level



behaviors. The purpose is to isolate behaviors where a sensor
fault results in a collision. The expectation is that the system
as a whole should be robust to failure of a single sensor.

The requirement follows.

R4i,s =�¬
(
�[0,t1]

(
¬πi,coll ∧W (i, s)∧

(¬D(i, s) ∨ E(i, s) > εerr)
)
∧ ♦(t1,t2]πi,coll

)
The above requirement designates that there should not be

a period of t1 seconds where a visible object is not accurately
detected and no collision occurs, followed immediately by a
period of length t2 − t1 seconds that contains a collision.
In other words, the requirement indicates that a system level
fault (collision) should not occur within a short time after
a sensor fault. A behavior that violates this requirement
does not necessarily indicate that the sensor fault caused the
system fault, but it suggests a correlation, as it points to a
behavior wherein the system fault occurs a short time after
the sensor fault. Providing behavior examples that violate this
requirement can help to pinpoint the cause of system-level
faults.

When the object i and sensor s are clear from the context,
we drop the indices and refer to the requirement R4.

Requirement R5: The vehicle should not do excessive
braking unnecessarily or too often.

This is a system-level performance (driving comfort) re-
quirement, in that it requires that the system not brake un-
necessarily or too often, thereby causing discomfort for the
passengers.

The requirement follows.

R5 = �
(
¬�[0,t1](B ∧ ¬C)∧

¬
(
edge ∧ ♦(0,t2](edge ∧ ♦(0,t2]edge)

))
,

where

edge = B ∧©¬B.

Here, C is a variable that is true when the Ego vehicle is
estimated to collide with another object in the environment,
based on a simplified model of future behaviors. The simplified
model that we use for future trajectory estimation is the
Constant Turn Rate and Velocity (CTRV) model [50]. B
represents that the amount of braking force applied by the
controller exceeds half of the available braking force. The
variable edge represents the event of a true value of B
followed by a false value in the next time step.

To understand the meaning of requirement R5, consider the
following part of the requirement:

�
(
¬�[0,t1](B ∧ ¬C)

)
,

which requires that the system not apply excessive braking
for more than a specific amount of time (t1) while there is no
collision predicted. This essentially stipulates that the system
should not unnecessarily brake for a prolonged amount of time.
Next, consider the second part of requirement R5:

�
(
¬
(
edge ∧ ♦(0,t2](edge ∧ ♦(0,t2]edge)

))
,

which indicates that there should not be an “on-off” behavior,
followed by another “on-off” behavior, followed by a third
“on-off” behavior, with less than t2 seconds between each
other. This essentially requires that the brakes not be applied
and released too often. Thus, this is a riding comfort require-
ment.

B. Development Process Support

We describe how requirements R1 through R5 can be used
to support both the controller design and testing phases of the
development process.

For all of the requirements, any detected violation (falsifi-
cation) should be linked back to the conditions that caused the
violation.

Consider the first scenario’s requirement, R1, “Vehicle
should not collide with an object”: if the vehicle does collide
with an object, then we would go back and see what conditions
caused such an event, for example, whether the vehicle speed
trace exhibited an anomaly or whether the vehicle was moving
erratically. Testing for collision avoidance is well established
in the field of ADAS. Often inflatable and other destructible
targets are employed for convenience; for example, see [51]
and Figure 5.

Fig. 5: Robotic pedestrian surrogate target with a Toyota
autonomous vehicle.

In the requirement “Sensor should detect visible obstacles”
we focus on the detection of an obstacle as operational
imperative. If the sensor fails to detect within a time interval,
then the requirement will be violated. This is essentially the
sensor-level requirement (visible but not detected), and test
engineers can set a real-world experiment to verify it relatively
easy because it is decoupled from others (one-term inequality,
sensor by sensor).

The requirement ”Localization error should not be too high
for too long” is important to verify (falsify) for both ego-
location and identification of positions of other agents in the
environment. Placing an ego-vehicle in the correct pose on the
road is usually not achieved by simply relying on GPS signal
processing, due to the GPS tendency to “jump” unpredictably,
but instead by estimating and dynamically refining the pose
through landmark observations, such as road edges, vertical
elements such as light poles, and signs. Assuming that the
ego-vehicle localization is done with sufficient accuracy, the
remaining task of localizing is to make sure that the location
of other agents, especially those in the planned path of the ego



vehicle, are estimated with sufficient accuracy. Often a grid-
based representation centered on the ego-vehicle is employed
(e.g., [52]). Estimating E(i, s) in R3 is not trivial, but practical
approaches exist that can be used by test engineers (e.g., [53]).

The requirement “A sensor-related fault should not lead to a
system-level fault” is a form of robustness requirement. This
is similar to a requirement that the system should have no
“single point of failure”, which enforces that the failure of
any single component will not cause the system to fail (for
example, see [54]). We make an important clarification that
is practical but limiting in scope: that no failure should occur
within the specified (short) time after the fault. Test engineers
could readily use examples of behavior provided in the course
of falsifying this requirement.

Lastly, the requirement “The vehicle should not brake too
often” is an example of a possible set of requirements designed
to establish how comfortable the ride in the vehicle is. It is
known that autonomous vehicles could induce motion sickness
in passengers if the vehicle control system does not comply
with human physiology [55], [56]. A better requirement may
well be developed using fuzzy set theory and further refined
for a specific target group of passengers (e.g., elderly people).
An alternative requirement could be defined by counting
the number of occurrences of an event within a total time
period, instead of relating one occurrence to another. Such a
requirement can be defined as a Timed Propositional Temporal
Logic (TPTL) specification. TPTL is a variant of temporal
logic and it is also supported in our framework [57].

V. FRAMEWORK

We describe Sim-ATAV, a framework for performing testing
and analysis of autonomous driving systems in a virtual
environment. The simulation environment used in Sim-ATAV
includes a vehicle perception system, a vehicle controller,
and a model of the physical environment. The perception
system processes data from three sensor systems: CCD camera
images, lidar, and radar. The framework uses freely available
and low cost tools and can be run on a standard desktop
PC. Later, we demonstrate how Sim-ATAV can be used to
implement traditional testing approaches, as well as advanced
automated testing approaches that were not previously possible
using existing frameworks.

Figure 6 shows an overview of the simulation environment.
The environment consists of a Simulator and a Vehicle Control
system. The Simulator contains models of the ego vehicle,
agents, and other objects in the environment (e.g., roads,
buildings). The Simulator outputs sensor data to the Vehicle
Control system. The sensor data includes representations of
CCD camera, lidar, and radar data. Simple models of the
sensors are used to produce the sensor data. For example,
synthetic CCD camera images are rendered by the Simulation
system, as if they came from a camera mounted on the
front of the ego vehicle. The Vehicle Control system contains
models of the Perception System, which performs sensor data
processing and sensor fusion. The Controller uses the output
of the Perception System to make decisions about how to
actuate the AV system. Actuation commands are sent from
the Controller to the Simulator.
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Vehicle Control
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Sensor 
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Fig. 6: Overview of the simulation environment.

Simulations proceed iteratively. At each instant, sensor data
is processed by the Vehicle Control, which then makes an
actuation decision. The actuation decision is then transmitted
back to the Simulator, which uses the actuation commands to
update the physics for the next time instant. This process is
repeated until a designated time limit has been reached.

The Vehicle Control system is implemented in Python. We
use simplified algorithms to implement the subsystems of the
vehicle control, which is sufficient in this case, as the purpose
of this investigation is to evaluate new testing methodologies
and not to evaluate a real AV control design; however, we
note that it is straightforward to replace our algorithms with
production versions to test real control designs.

To process CCD image data, we use a lightweight DNN,
SqueezeDet, which performs object detection and classifica-
tion [58]. SqueezeDet is implemented in TensorFlowTM[59],
and it outputs a list of object detection boxes with correspond-
ing class probabilities. This network was originally trained
on real image data from the KITTI dataset [11] to achieve
accuracy comparable to the popular AlexNet classifier [16].
We further train this network on the virtual images generated
in our framework. Fig. 7 shows an example output from
SqueezeDet, based on a synthetic image produced by our
simulator. The image shows two vehicles correctly detected
and classified, along with a portion of a shadow that is
incorrectly classified as a vehicle.

To process lidar point cloud data, we cluster the received
points based on their positions and estimate existence and
types of the objects based on the dimensions of the clusters.
We implement a simple sensor fusion algorithm that relates
and merges the object detections from camera, lidar, and
radar with a simple logic. It also utilizes the expected current
positions of previously detected objects. The object states
estimated by the sensor fusion algorithm are used to estimate
the future trajectories of the objects using the CTRV model
[50].

Fig. 8 illustrates outputs from the sensor fusion system.
In the figure, the solid yellow box in the middle represents
the Ego vehicle. Yellow circles in front of the ego vehicle
represent the estimated future trajectory of the Ego vehicle.
Small white dots represent lidar point cloud data. The colored
dots and rectangles represent detected objects, with their
estimated orientation indicated with a white line in front of
them. Expected future positions of agent vehicles with respect



Fig. 7: Outputs from the SqueezeDet DNN, based on a
synthesized camera image.

Fig. 8: Sensor fusion outputs.

to the ego vehicle are represented by red circles.
Our simple planner takes the high level target path and target

speed and the outputs of sensor fusion and trajectory estima-
tion algorithms. It assigns collision risk levels to the target
objects with a simple logic and outputs the risk assessments
and a target speed, which depends on the target speed of the
mission or other factors, such as the distance to a sharp turn
ahead.

Our control algorithm implements simple path and speed
tracking and collision avoidance features. The controller re-
ceives the outputs of the planner. When there is no collision
risk, the controller drives the car with the target speed and
on the target path. When a future collision with an object is
predicted, it applies the brakes at a level commensurate with
the risk assigned to the object.
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Fig. 9: Flowcharts illustrating the combinatorial testing (a) and
falsification (b) approaches.

The environment modeling framework is implemented in
Webots [60], a robotic simulation framework that models the
physical behavior of robotic components, such as manipu-
lators and wheeled robots, and can be configured to model
autonomous driving scenarios. In addition to modeling the
physics, a graphics engine is used to produce images of the
scenarios. In Sim-ATAV, the images rendered by Webots are
configured to correspond to the image data captured from a
virtual camera that is attached to the front of a vehicle.

The process used by Sim-ATAV for test generation and
execution for discrete and discretized continuous parameters
is illustrated by the flowchart shown in Fig. 9-(a). Sim-ATAV
first generates test cases that correspond to scenarios defined
in the simulation environment using covering arrays as a
combinatorial test generation approach. The scenario setup
is communicated to the simulation interface using TCP/IP
sockets. After a simulation is executed, the corresponding
simulation trace is received via socket communication and
evaluated using a cost function. Among all discrete test cases,
the most promising one is used as the initial test case for the
falsification process shown in Fig. 9-(b). For falsification, the
result obtained from the cost function is used in an optimiza-
tion setting to generate the next scenario to be simulated. For
this purpose, we used S-TaLiRo [43], which is a MATLABr

toolbox for falsification of CPSs. Similar tools, such as Breach
[44], can also be used in our framework for the same purpose.

VI. TESTING APPLICATION

In this section, we present an evaluation of our Sim-ATAV
framework using three separate driving scenarios. The scenar-
ios are selected to be both challenging for the autonomous
driving system and also analogous to plausible driving scenar-
ios experienced in real-world situations. In general, the system
designers will need to identify crucial driving scenarios, based
on intuition about challenging situations, from the perspec-
tive of the autonomous vehicle control system. A thorough
simulation-based testing approach will include a wide array
of scenarios that exemplify critical driving situations.

For each of the following scenarios, we consider a subset of
the requirements presented in Sec. IV and describe how to use
the results to enhance the development process. We conclude
the section with a summary of the results.
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Fig. 10: Overview of the scenario 1.

Scenario 1

The first scene that we consider is a straightaway section
of a two-lane road, as illustrated in Fig. 10. Several cars are
parked on the right-hand side of the road, and a pedestrian is
jay-walking in front of one of the cars, passing in front of the
Ego car from right to left. We call this driving scenario model
M1. The scenario simulates a similar setup to the Euro NCAP
Vulnerable Road User (VRU) protection test protocols [4].

Several aspects of the driving scenario are parameterized,
meaning that their values are fixed for any given simulation
by appropriately selecting the model parameters pd. The
parameters we use for this scenario are as follows:
• Initial speed and lateral position of the Ego vehicle inside

its lane;
• Walking speed of the pedestrian;
• The model of Agent car 1, which is next to the pedestrian;
• R, G, B values for the colors of Agent car 1;
• R, G, B values for the pedestrian’s shirt and pants.

We choose the parameters such that their specific combinations
could be challenging to a DNN-based pedestrian detection
system that relies on CCD camera images. We also choose
some of the parameter ranges so that the scenario is physically
challenging for the brake performance.

We evaluate Model M1 against three of the requirements
from Sec. IV: R1, R2, and R4. These include the system-level
requirement, the sensor-level requirements, and the sensor-to-
system-level requirement. We use this collection of require-
ments for Model M1 to demonstrate how we can automatically
identify each type of behavior using our framework.

Scenario 2

The next scenario involves a left turn maneuver by the ego
vehicle in a controlled intersection, as illustrated in Fig. 11.
An agent vehicle (Agent 1) in the opposing lane unexpectedly
passes through the intersection, against a red light, potentially
causing a collision with the Ego vehicle. There is also another
agent car (Agent 2), which is making a legal left turn from
the opposing lane. It is incumbent on the Ego vehicle to take
action to avoid colliding with the agent vehicles. We call the
model of this scenario M2.

For this experiment we choose parameters such that the
position of Agent 2, or trajectory followed by Agent 1, in
combination with the behavior of the Ego, may result in
poor performance from the sensor processing or trajectory
estimation systems. The following variables are parameterized
for this model:

Ego

Agent 1

Agent 2

Fig. 11: Overview of the scenario 2.

• Ego vehicle initial speed and initial distance to the
intersection;

• Agent 1 initial distance to the intersection, initial target
speed, target speed when approaching the intersection,
target speed inside the intersection, initial lateral position
w.r.t its lane center, target lateral position w.r.t its lane
center when approaching the intersection, and target
lateral position w.r.t its lane center inside the intersection;

• Agent 2 initial lateral position w.r.t its lane center, speed,
and initial distance to the intersection.

We evaluate Model M2 against requirement R4. The idea
in using the sensor-to-system-level requirement is that it is
relatively easy, in general, to find behaviors that result in
a collision for Model M2, but many collision cases are not
interesting for the designers. This could be because, for ex-
ample, the agent car is moving too quickly for the ego vehicle
to avoid. This would be a behavior that is not necessarily
caused by any specific incorrect behavior on the part of the
ego vehicle. Instead, we use R4 to identify behaviors where
there is a collision that is directly correlated to unacceptable
performance from the sensor processing system; in a sense,
these are cases where the sensor data processing or future
trajectory estimation system is at fault for the collision. These
are more valuable cases, in that they can more easily be used
to debug specific aspects of the ego vehicle control algorithms.

Scenario 3

In this last scenario, the ego vehicle is making a left turn
through an intersection, while an agent vehicle in the opposing
lane is also making a left turn. This scene is similar to the
Scenario 2, as depicted in Fig. 11, except that Agent 1 is



not present in this scenario, only Agent 2, which we refer to
as the agent vehicle for this scenario. If both ego and agent
vehicles are not accurately regulating their trajectories during
this maneuver, a collision may occur. We call the model of
this scenario M3.

In this scenario, we search over target trajectories of the ego
and agent vehicles. Below are the parameters that we use:
• Ego vehicle initial speed, target lateral position w.r.t

its lane center when entering the intersection, distance
traveled inside the intersection before starting its left
turn, target lateral position w.r.t its lane center when
exiting the the intersection, and distance traveled inside
the intersection after finishing its left turn;

• Agent vehicle speed, target lateral position w.r.t its lane
center when entering the intersection, distance traveled
inside the intersection before starting its left turn, target
lateral position w.r.t its lane center when exiting the the
intersection, and distance traveled inside the intersection
after finishing its left turn.

We evaluate Model M3 against requirement R5. The purpose
of considering the performance requirement R5 in this case,
is that scenario M3 is difficult to falsify. That is, due to
the specific parameter ranges selected for the scenario, it
is unlikely that the ego vehicle will collide with the agent
vehicle. Instead, in this case, we are interested to identify
situations where the emergency braking system unnecessarily
decelerates the ego vehicle, causing unacceptable performance,
from a ride-quality perspective. The scenario can easily lead to
unnecessary braking, as the ego and agent vehicles momentar-
ily move toward each other during their left turn maneuvers,
which can cause the emergency braking algorithm to decide,
incorrectly, that a collision is imminent. This type of case
can be useful as feedback to designers, as it can highlight
controller behaviors that are too conservative, at the expense
of ride quality.

Summary of Test Results

We present results from experiments demonstrating the
application of our framework to the scenarios and requirements
described above. Table I summarizes the results. Indicated in
the table for each case study are the requirements used to test
each model, the testing approach used, the set of active sensors
used, and a summary of the results. We describe the results in
detail below.

Covering array and falsification on Model M1: In our
previous work [17], we proposed and studied the effectiveness
of a testing approach that first uses covering arrays to discover
critical regions, based on a set of discrete parameters, then
uses those results as the initial points for robustness guided
falsification. Here, we apply that approach on model M1

for 3 different requirements, R1, R2 and R4. In model
M1, we focus on the camera sensor and DNN-based object
detection and classification algorithm. Because of this, most
of our parameters are colors of pedestrian clothing and the
agent vehicle, as described in Sec. IV. We first execute 195
covering array tests and collect simulation trajectories. Then,
we compute the robustness values for those trajectories, with

respect to the requirements R1, R2 and R4. Finally, for each
requirement, starting from the case with the smallest positive
robustness value, we try to find as many additional falsifica-
tions as possible, within a maximum of 300 extra simulations,
by using a falsification approach that uses simulated annealing
to perform the optimization.

For requirement R1, 67 cases were falsified from the
covering array tests (i.e., 67 of the 195 cases did not satisfy
R1). Starting from 7 of the remaining (non-falsifying) cases
from the covering array tests, 5 additional falsifying cases were
discovered using falsification. For requirement R2, 65 cases
were falsified from the covering array cases, with an additional
8 cases discovered during the falsification step. For require-
ment R4, 67 cases were falsified during the covering array
step, with 12 more cases discovered during the falsification
step.

These results demonstrate that we can automatically identify
test cases that violate specific sensor-level, system-level, and
sensor-to-system level requirements. These test cases can be
fed back to the designers to improve the perception or control
design or can be used as guidance to identify challenging
scenarios to be used during the testing phase.

Analysis of robustness values on the falsification of Model
M2: The robustness value, which is described in Sec. III, for
a trajectory with respect to the requirement is automatically
computed in Sim-ATAV. This computation is performed by the
S-TaLiRo tool [42] and is used to guide the test cases towards
a falsification.

We use the results of falsification on Model M2 to show, in
Fig. 12, how the robustness value changes over time and finally
becomes negative, which indicates falsification of the require-
ment. In this case, Sim-ATAV was able to find a falsifying
example in 58 simulations. Because the cost function gradients
are not computable, we use a stochastic global optimization
technique, Simulated Annealing (SA). The blue line shows the
robustness value for each simulation. We can observe that the
robustness value per simulation run is not monotonic. This
is due to the stochastic nature of the optimizer; however, the
achieved minimum robustness up to the current simulation is
a non-increasing function, which shows the best robustness
achieved after each simulation. As soon as the framework finds
a test case that causes a negative robustness value, it stops the
search and reports the falsifying example.

Fig. 13 shows images from the simulation execution of a
falsifying example for model M2 with respect to the require-
ment R2. Between the time corresponding to Fig. 13-(a) to
Fig. 13-(b), the red car approaching from the opposite side is
driving on a path such that there will be a future collision with
the Ego vehicle; however, due to incorrect locatization of the
agent vehicle, the Ego vehicle is not able to correctly predict
the future trajectory of the agent vehicle, and so it does not
predict a collision. Hence it continues without taking action
to avoid the collision. Starting from the moment shown on
Fig. 13-(c), the Ego vehicle predicts the collision and starts
applying emergency braking; however, because it takes action
too late, the Ego vehicle cannot avoid a collision with the
agent vehicle, as shown in Fig. 13-(d).

We note that, even for cases that are non-falsifying, the



Model M1 Model M2 Model M3

Requirement R1 R2 R4 R4 R5

Testing
Modality

CA+
Falsification

CA+
Falsification

CA+
Falsification Falsification Falsification

Active Sensors CCD CCD CCD CCD, Radar, LIDAR CCD, LIDAR

Computation
Time

CA: 2h, 10min.
2h, 3min. 9h, 40min.

Fals.:3h, 33min. 3h, 35min. 3h 34min.

No.
Simulations

CA: 195
58 232

Fals.:300 300 300

Falsification
Obtained

67 by CA + 65 by CA + 67 by CA +

5 by falsification 8 by falsification 12 by falsification

Application
of Results

Lowest robustness cases used to create critical tests. Falsifying cases relate to
processing of specific sensor; aids
in controller design improvement.

Poor performance cases used to
improve controller design in
modeling phase.

TABLE I: Results from autonomous driving tests using virtual framework.

Fig. 12: Robustness guided falsification utilizes global opti-
mization techniques to guide the test cases toward falsification.

robustness values are useful for the system designer’s analysis,
as behaviors with low robustness value are “close to” violating
the requirement and therefore correspond to cases that may
require closer attention.

A visual analysis of a falsifying simulation trajectory from
Model M3: As presented in Table I, Sim-ATAV was able to
find a falsifying example for model M3 with respect to the
STL requirement R5 in 232 simulations. We present a visual
analysis of the falsifying test result. Note that this analysis
is done automatically in the framework, and corresponding
satisfaction/falsification of the requirement is returned to the
user, along with the robustness value that shows the signed
distance to the boundary of satisfaction or falsification. The
type of visual analysis we present here may be useful for
the system designers to understand the reason behind the
falsification (or satisfaction) of a requirement, which can
be helpful for debugging or improving the design. For this
analysis, we use the definitions and notation introduced in
Section IV.

Fig. 14 shows a part of the simulation trajectory of Model
M3 for a time window around the falsification instance,
together with the corresponding logic evaluations of the pred-
icates related to the subformulas in Requirement R5. In the
top plot in Fig. 14, the red solid line is the estimated future
minimum distance between the ego vehicle and Agent vehicle

1, with respect to the simulation time. This estimation is
based on the ground truth information collected from the
simulation and utilizes the CTRV model at each time step
of the simulation to compute the expected estimation that is
described in R5. For this example, we define the variable C
that is used in R5 as (df,min < 0.5), where df,min represents
the expected minimum future distance; the dashed horizontal
red line in Fig. 14 located at 0.5m is the threshold minimum
future distance for a collision estimation. The values of t1
and t2 are respectively defined as 0.6 and 0.5 in this example.
Since df,min is never less than 0.5 in this case, the collision
estimation variable C, which is represented by the black solid
line in the top plot, is always false.

The middle plot presents a similar evaluation for computing
the variable B used in R5, which represents excessive braking.
This evaluation uses the collected actual normalized brake
power data, say br, from the simulation and computes the
logical variable B = (br > 0.5). The solid and dashed red
lines represent br and the threshold value 0.5, respectively.
The solid black line shows the value of B with respect to
time.

The bottom plot in Fig. 14 shows the value of the variable
edge that is defined for the requirement R5 with respect to
the simulation time.

The first part of the requirement R5, which was defined
as �

(
¬�[0,t1](B ∧ ¬C)

)
in Section IV, would evaluate to

false if and only if there would exists a time window of t1
seconds such that B is always true and C is always false.
Focusing on the values of C and B from the top two plots in
Fig. 14, we can see that although C is always false, because
there is no time window of t1 = 0.6s in which B is always
true, the first part of the requirement evaluates to true. This
means this execution of model M3 satisfies the first part of
the requirement R5.

The second part of the requirement R5, which is defined as
�
(
¬
(
edge ∧ ♦(0,t2](edge ∧ ♦(0,t2]edge)

))
evaluates to false

if and only if there exists a series of three falling edges of
B (edge), such that one occurrence of edge follows another
within a time window of t2 seconds. As we see in the bottom



plot of Fig. 14, at time 5.6s it is true that there exists an edge
and it is also true that there exists another edge within the
time window of 0 to 0.5s following this moment (occurring at
5.85s). Hence the inner (edge∧♦(0,t2]edge) inside the above
formula evaluates to true at time 5.6s. If we call this event
e1, the overall formula will evaluate to false if there exists an
edge that is followed by event e1 in a time window between
0 and t2 = 0.5s. This happens at time 5.46s, which is the
moment that there exists an edge followed by event e1 at
0.14 ∈ (0, 0.5] seconds, where the event e1 is defined as an
edge followed by another edge within t ∈ (0, 0.5] seconds.
Hence, the second part of the requirement R5 evaluates to
false, and as a result, R5 evaluates to false at time 5.46s,
since it is a conjunction of parts 1 and 2. In other words, the
system falsifies (does not satisfy) the requirement R5.

VII. CONCLUSIONS

We demonstrated a simulation-based adversarial test gen-
eration framework for autonomous vehicles. The framework
works in a closed-loop fashion, where the system evolves in
time with the feedback cycles from the autonomous vehicle’s
controller. The framework includes models of lidar and radar
sensor behaviors, as well as a model of the CCD camera sensor
inputs. CCD camera images are rendered synthetically by
our framework and processed using a pre-trained deep neural
network (DNN). Using our framework, we demonstrated a new
effective way of finding a critical vehicle behaviors by using
1) covering arrays to test combinations of discrete parameters
and 2) simulated annealing to find corner-cases.

Future work will include using identified counterexamples
to retrain and improve the DNN-based perception system.
Additionally, the scene rendering will be made more realistic
by using other scene rendering tools, such as those based on
state-of-the-art game engines.

Also, we note that the formal requirements that we con-
sidered were provided as an example of the type used when

(a) Perception error (b) Perception error

(c) Emergency braking (d) Collision

Fig. 13: Time-ordered images from the falsifying example on
model M1.

Fig. 14: Analysis of falsification for Model M3.

employing a requirements-driven development approach based
on a temporal logic language, which is a formalism that may
be unfamiliar to many test engineers. Future research will
include investigating ways to automatically produce formal
requirements based on requirements given in more traditional
forms.
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ovic, and S. Sankaranarayanan, “Specification-based monitoring of
cyber-physical systems: A survey on theory, tools and applications,” in
Lectures on Runtime Verification - Introductory and Advanced Topics,
ser. LNCS. Springer, 2018, vol. 10457, pp. 128–168.

[42] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-
ifications,” in Formal Approaches to Testing and Runtime Verification,
ser. LNCS, vol. 4262. Springer, 2006, pp. 178–192.

[43] G. Fainekos, S. Sankaranarayanan, K. Ueda, and H. Yazarel, “Verifica-
tion of automotive control applications using s-taliro,” in Proceedings
of the American Control Conference, 2012.

[44] A. Donze and O. Maler, “Robust satisfaction of temporal logic over real-
valued signals,” in Formal Modelling and Analysis of Timed Systems, ser.
LNCS, vol. 6246. Springer, 2010.

[45] H. Abbas, G. E. Fainekos, S. Sankaranarayanan, F. Ivancic, and
A. Gupta, “Probabilistic temporal logic falsification of cyber-physical
systems,” ACM Transactions on Embedded Computing Systems, vol. 12,
no. s2, May 2013.

[46] B. Hoxha, H. Bach, H. Abbas, A. Dokhanchi, Y. Kobayashi, and
G. Fainekos, “Towards formal specification visualization for testing and
monitoring of cyber-physical systems,” in International Workshop on
Design and Implementation of Formal Tools and Systems, 2014.

[47] J. Kapinski, J. V. Deshmukh, X. Jin, H. Ito, and K. Butts, “Simulation-
based approaches for verification of embedded control systems: An
overview of traditional and advanced modeling, testing, and verification
techniques,” IEEE Control Systems Magazine, vol. 36, no. 6, pp. 45–64,
2016.

[48] A. Hartman, “Software and hardware testing using combinatorial cov-
ering suites,” Graph theory, combinatorics and algorithms, vol. 34, pp.
237–266, 2005.

[49] D. R. Kuhn, R. N. Kacker, and Y. Lei, Introduction to combinatorial
testing. CRC press, 2013.

[50] R. Schubert, E. Richter, and G. Wanielik, “Comparison and evaluation
of advanced motion models for vehicle tracking,” in 2008 11th Interna-
tional Conference on Information Fusion, June 2008, pp. 1–6.

[51] D. J. LeBlanc, M. Gilbert, S. Stachowski, D. Blower, C. A. C. Flannagan,
S. Karamihas, and W. T. B. andRini Sherony, “Advanced surrogate target
development for evaluating pre-collision systems,” in 23rd Enhanced
Safety of Vehicles Conferences, 2013.

[52] A. Petrovskaya and S. Thrun, “Model based vehicle detection and
tracking for autonomous urban driving,” Autonomous Robots, vol. 26,
no. 2, pp. 123–139, Apr 2009.

[53] B. Grabe, T. Ike, and M. Hötter, “Evidence based evaluation method for
grid-based environmental representation,” in FUSION. IEEE, 2009, pp.
1234–1240.

[54] “ISO Functional Safety,” https://en.wikipedia.org/wiki/ISO 26262, ac-
cessed: 2018-09-11.

[55] M. Elbanhawi, M. Simic, and R. Jazar, “In the passenger seat: Inves-
tigating ride comfort measures in autonomous cars,” IEEE Intelligent
Transportation Systems Magazine, vol. 7, no. 3, pp. 4–17, Fall 2015.

[56] P. Green, “Motion sickness and concerns for self-driving vehicles: A lit-
erature review,” http://umich.edu/ driving/publications/Motion-Sickness–
Report-061616pg-sent.pdf, accessed: 2018-09-11.

[57] A. Dokhanchi, B. Hoxha, C. E. Tuncali, and G. Fainekos, “An efficient
algorithm for monitoring practical tptl specifications,” in Formal Meth-
ods and Models for System Design (MEMOCODE), 2016 ACM/IEEE
International Conference on. IEEE, 2016, pp. 184–193.

[58] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer, “Squeezedet: Unified,
small, low power fully convolutional neural networks for real-time object
detection for autonomous driving,” arXiv preprint arXiv:1612.01051,
2016.

[59] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-
scale machine learning on heterogeneous distributed systems,” arXiv
preprint:1603.04467, 2016.

[60] O. Michel, “Cyberbotics ltd. Webots: professional mobile robot simula-
tion,” International Journal of Advanced Robotic Systems, vol. 1, no. 1,
p. 5, 2004.


