

IMPLEMENTATION AND SIMULATION OF MC68HC11

MICROCONTROLLER UNIT USING SYSTEMC

FOR CO-DESIGN STUDIES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

CUMHUR ERKAN TUNCALI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

THE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2007

Approval of the Thesis

IMPLEMENTATION AND SIMULATION OF MC68HC11

MICROCONTROLLER UNIT USING SYSTEMC

FOR CO-DESIGN STUDIES

Submitted by CUMHUR ERKAN TUNCALI in partial fulfillment of the requirements

for the degree of Master of Science in Electrical and Electronics Engineering by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences _______________

Prof. Dr. İsmet Erkmen

Head of Department, Electrical and Electronics Eng., METU _______________

Prof. Dr. Murat Aşkar

Supervisor, Electrical and Electronics Engineering, METU _______________

Examining Committee Members:

Prof. Dr. Hasan Güran (*)

Electrical and Electronics Engineering, METU ___________________

Prof. Dr. Murat Aşkar (**)

Electrical and Electronics Engineering, METU ___________________

Assist. Prof. Dr. Cüneyt Bazlamaçcı

Electrical and Electronics Engineering, METU ___________________

Assoc. Prof. Dr. Gözde Bozdağı Akar

Electrical and Electronics Engineering, METU ___________________

M.Sc. Lokman KESEN

ASELSAN ___________________

 Date: ___________________

(*) Head of Examining Committee

(**) Supervisor

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last name : Cumhur Erkan Tuncalı

Signature :

iv

ABSTRACT

IMPLEMENTATION AND SIMULATION OF MC68HC11

MICROCONTROLLER UNIT USING SYSTEMC

FOR CO-DESIGN STUDIES

Tuncalı, Cumhur Erkan

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Murat Aşkar

December 2007, 127 pages

In this thesis, co-design and co-verification of a microcontroller hardware and

software using SystemC is studied. For this purpose, an MC68HC11

microcontroller unit, a test bench that contains input and output modules for the

verification of microcontroller unit are implemented using SystemC programming

language and a visual simulation program is developed using C# programming

language in Microsoft .NET platform.

SystemC is a C++ class library that is used for co-designing hardware and

software of a system. One of the advantages of using SystemC in system design

v

is the ability to design each module of the system in different abstraction levels. In

this thesis, test bench modules are designed in a high abstraction level and

microcontroller hardware modules are designed in a lower abstraction level.

At the end, a simulation platform that is used for co-simulation and co-verification

of hardware and software modules of overall system is developed by combining

microcontroller implementation, test bench modules, test software and visual

simulation program. Simulations at different levels are performed on the system in

the developed simulation platform. Simulation results helped observing errors in

designed modules easily and making corrections until all results verified designed

hardware modules. This stuation showed that co-designing and co-verifying

hardware and software of a system helps finding errors and making corrections in

early stages of system design cycle and so reducing design time of the system.

Keywords: SystemC, MC68HC11, Microcontroller Simulator, Hardware and

Software Co-design, SystemC Visual Simulation Tool.

vi

ÖZ

BÜTÜNLEŞİK TASARIM ÇALIŞMALARI İÇİN

MC68HC11 MİKRODENETLEYİCİSİNİN SYSTEMC KULLANILARAK

GERÇEKLEŞTİRİLMESİ VE SİMÜLASYONUNUN YAPILMASI

Tuncalı, Cumhur Erkan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Murat Aşkar

Aralık 2007, 127 sayfa

Bu tezde, bir mikrodenetleyicinin donanım ve yazılımının SystemC kullanılarak

bütünleşik tasarım ve bütünleşik doğrulaması incelenmiştir. Bu amaçla, SystemC

programlama dili kullanılarak, bir MC68HC11 mikrodenetleyici ünitesi,

mikrodenetleyici ünitesini doğrulamak için giriş ve çıkış modülleri içeren bir test

ünitesi ve Microsoft .NET platformunda C# programlama dili kullanılarak bir görsel

simülasyon programı geliştirilmiştir.

SystemC, bir sistemin donanım ve yazılımının bütünleşik tasarımının yapılması

için kullanılan bir C++ sınıf kütüphanesidir. Sistem tasarımlarında SystemC

vii

kullanımının avantajlarından birisi, sistemin her modülünü farklı soyutlama

seviyelerinde tasarlama imkanıdır. Bu tezde, test modülleri yüksek bir soyutlama

seviyesinde, mikrodenetleyici donanımı modülleri ise daha düşük bir soyutlama

seviyesinde tasarlanmıştır.

Neticede, gerçekleştirilmiş mikrodenetleyici, test modülleri, test yazılımı ve görsel

simülasyon program birleştirilerek, bütün sistemin donanım ve yazılım

modüllerinin bütünleşik simülasyon ve bütünleşik doğrulamasını yapmak için

kullanılan bir simülasyon platformu oluşturulmuştur. Geliştirilen simülasyon

platformunda, sistem üzerinde farklı seviyelerde simülasyonlar uygulanmıştır.

Simülasyon sonuçları, tüm sonuçlar tasarlanan donanım modüllerini doğrulayana

dek tasarlanan modüllerdeki hataları kolaylıkla görmeye ve düzeltmelerin

yapılmasına yardımcı olmuştur. Bu durum, bir sistemin donanım ve yazılımının

bütünleşik tasarım ve bütünleşik doğrulamasının, sistem tasarım sürecinin erken

safhalarında hataları bulmaya, düzeltmelerin yapılmasına ve böylece sistem

tasarım süresinin düşmesine yardımcı olduğunu göstermiştir.

Anahtar Kelimeler: SystemC, MC68HC11, Mikrodenetleyici Simülatörü, Donanım

ve Yazılım Bütünleşik Tasarımı, SystemC Görsel Simülasyon Aracı

viii

To My Family

ix

ACKNOWLEDGEMENTS

The author would like to express his deepest gratitude to Prof. Dr. Murat Aşkar for

his guidance, encouragement and unlimited patience throughout this thesis work.

The author would also like to thank his colleagues in BOTT for their

encouragement and support.

Finally, the author would like to express his special thanks to his family for their

great support during this thesis work.

x

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ .. vi

ACKNOWLEDGEMENTS ... ix

TABLE OF CONTENTS .. x

LIST OF FIGURES .. xii

LIST OF TABLES ... xvi

LIST OF ABBREVIATIONS ... xvii

CHAPTER

 1. INTRODUCTION .. 1

 2. USING SYSTEMC FOR HARDWARE / SOFTWARE CO-DESIGN AND
CO-VERIFICATION ... 7

2.1 Need for Hardware / Software Co-design of Systems 7

2.2 Using SystemC for Co-design ... 8

2.3 Development Environment for SystemC.. 11

 3. M68HC11 FAMILY OF MICROCONTROLLER UNITS 16

3.1 General Description .. 16

3.2 Operation Modes of MC68HC11 ... 19

3.3 On-Chip Memory Systems .. 20

3.4 Central Processing Unit (CPU) .. 22

3.5 Addressing Modes .. 25

3.6 Parallel Input / Output (I/O) ... 26

3.7 Synchronous Serial Peripheral Interface (SPI) 31

3.8 Asynchronous Serial Communications Interface (SCI) 33

3.9 Main Timer and Real Time Interrupt .. 35

3.10 Pulse Accumulator .. 36

xi

 4. DESIGN OF MC68HC11 MICROCONTROLLER MODEL

 USING SYSTEMC ... 37

4.1 MC68HC11 SystemC Model Internal Structure 38

4.2 CPU Controller Unit .. 40

4.3 Clock Divider ... 45

4.4 Arithmetic and Logic Unit (ALU) .. 47

4.5 Register File .. 56

4.6 Address Bus Controller ... 60

4.7 Handshake I/O Module ... 63

4.8 Timer System .. 64

4.9 Serial Communications Module ... 67

4.10 Read Only Memory (ROM).. 69

4.11 Random Access Memory (RAM) ... 71

4.12 Electrically Erasable Programmable ROM (EEPROM) 73

4.13 VLSI Implementation of SystemC Modules 75

 5. VISUAL SIMULATION PLATFORM .. 77

5.1 Structure of Visual Simulation Platform ... 77

5.2 Test Bench .. 78

5.3 Features of Visual Simulation Software ... 79

 6. CONCLUSIONS ... 94

REFERENCES .. 98

APPENDIX

 A. M68HC11 INSTRUCTION SET .. 100

 B. MICROCONTROLLER TEST CODE .. 109

B.1 Instructions and Addressing Modes Test Program 109

B.2 Execution of Test Program on Original MC68HC11 115

B.2. Serial Port Test Program ... 119

 C. VISUAL SIMULATION TOOL USER GUIDE .. 120

xii

LIST OF FIGURES

Figure 2.1: A Typical Example of SoC Systems. .. 7

Figure 2.2: Design Flow Comparison ... 10

Figure 2.3: “Open Workspace” Menu Item in Microsoft Visual C++ 12

Figure 2.4: Building SystemC Library ... 12

Figure 2.5: Enabling Run-Time Type Information ... 13

Figure 2.6: Including SystemC Library to Library List 14

Figure 2.7: Inserting Signals in GTKWave. ... 15

Figure 3.1: MC68HC11E9 Pin Assignments ... 17

Figure 3.2: Block Diagram of MC68HC11E9 .. 18

Figure 3.3: Memory Map of MC68HC11E9 ... 20

Figure 3.4: CPHA Equals Zero SPI Transfer Format .. 32

Figure 3.5: CPHA Equals One SPI Transfer Format ... 33

Figure 3.6: Start Bit Reception ... 34

Figure 4.1: Internal Structure of MC68HC11 SystemC Model........................... 39

Figure 4.2: Datapath of Microprocessor ... 40

Figure 4.3: Block Diagram of CPU Controller ... 41

Figure 4.4: Internal Clock Cycles of a Bus Cycle .. 41

Figure 4.5: Clock Divider Symbol ... 45

Figure 4.6: Internal Clock Signals of MC68HC11 ... 46

xiii

Figure 4.7: Resulting Waveforms of Clock Divider Simulation 46

Figure 4.8: Arithmetic and Logic Unit Symbol ... 47

Figure 4.9: ALU Block Diagram .. 48

Figure 4.10: Arithmetic and Logic Unit Test Results 51

Figure 4.11: ALU Addition Test Waveforms .. 52

Figure 4.12: ALU Increment Test Waveforms ... 52

Figure 4.13: ALU Subtract Test Waveforms .. 52

Figure 4.14: ALU Decrement Test Waveforms ... 53

Figure 4.15: ALU AND Operation Test Waveforms ... 53

Figure 4.16: ALU OR Operation Test Waveforms ... 53

Figure 4.17: ALU XOR Operation Test Waveforms ... 54

Figure 4.18: ALU Complement Test Waveforms ... 54

Figure 4.19: ALU Negate Test Waveforms ... 54

Figure 4.20: ALU Arithmetic Shift Right Test Waveforms 55

Figure 4.21: ALU Arithmetic / Logical Shift Left Test Waveforms 55

Figure 4.22: ALU Logical Shift Right Test Waveforms 55

Figure 4.23: ALU Rotate Left Test Waveforms ... 56

Figure 4.24: ALU Rotate Right Test Waveforms ... 56

Figure 4.25: Register File Symbol. .. 57

Figure 4.26: Register File Test Waveforms ... 58

Figure 4.27: Register File Test Console Outputs .. 59

Figure 4.28: Address Bus Controller Symbol .. 60

xiv

Figure 4.29: Address Bus Controller Test Results .. 61

Figure 4.30: Console Outputs of Address Bus Controller Test 62

Figure 4.31: Handshake I/O Module Symbol .. 63

Figure 4.32: Handshake I/O Module Block Diagram 64

Figure 4.33: Timer System Symbol ... 65

Figure 4.34: Timer System Block Diagram .. 66

Figure 4.35: Serial Communications Module Symbol 67

Figure 4.36: Serial Communications Module Block Diagram........................... 68

Figure 4.37: ROM Symbol .. 69

Figure 4.38: Console Output of ROM Test .. 70

Figure 4.39: Resulting Waveforms of ROM Test ... 70

Figure 4.40: RAM Symbol ... 71

Figure 4.41: Waveforms of RAM Test Results .. 72

Figure 4.42: RAM Test Results ... 72

Figure 4.43: EEPROM Symbol ... 73

Figure 4.44: EEPROM Write / Read Test Results. .. 74

Figure 4.45: EEPROM Clear / Read Test Results. .. 75

Figure 5.1: Visual Simulation Platform .. 78

Figure 5.2: Main Window of Visual Simulation Software 81

Figure 5.3: 68HC11 Assembly Code Editor Window .. 82

Figure 5.4: Machine Code Generator Window .. 83

Figure 5.5: Test Environment Region of Simulation Program 85

xv

Figure 5.6: 8-bit Binary Switch Configuration .. 86

Figure 5.7: Push Button Pulse Generator Configuration 87

Figure 5.8: Serial Monitor Configuration ... 88

Figure 5.9: Test Bench Configuration Window ... 89

Figure 5.10: Running Simulation ... 90

Figure 5.11: Instruction and Special Function Registers Information............... 91

Figure 5.12: Internal Registers Information ... 92

Figure 5.13: RAM Content Window... 92

Figure 5.14: ROM Content Window .. 93

Figure 5.15: EEPROM Content Window ... 93

Figure C.1: Main Window of Visual Simulation Software 120

Figure C.2: Code Ediitor Example ... 121

Figure C.3: Code Generator Example ... 122

Figure C.4: Test Environment Example .. 123

Figure C.5: Test Bench Port Configuration Example 124

Figure C.6: 8-bit Binary Switch Configuration .. 125

Figure C.7: Push Button Pulse Generator Configuration 125

Figure C.8: Serial Monitor Configuration ... 126

Figure C.9: Running Simulation .. 126

Figure C.10: Simulation Results of Serial Monitor Module 127

xvi

LIST OF TABLES

Table 3.1: Internal Registers of M68HC11 CPU .. 23

Table 3.2: Condition Codes Register ... 24

Table 3.3: Summary of Port A Pins .. 27

Table 3.4: Summary of Port B Pins .. 28

Table 3.5: Summary of Port C Pins ... 29

Table 3.6: Summary of Port D Pins ... 30

Table 4.1: CPU States ... 43

Table 4.2: ALU Commands and Meanings .. 49

Table 4.3: Synthesis Results of ALU Module ... 76

Table A.1: Information on Operands .. 100

Table A.2: Information on Condition Codes .. 101

Table A.3: M68HC11 Instruction Set ... 102

xvii

LIST OF ABBREVIATIONS

ALU Arithmetic and Logic Unit

ASM Assembly Language

ASIC Application Specific Integrated Circuit

CCR Condition Codes Register

CISC Complex Instruction Set Computer

Co-design Compound Design

CPU Central Processing Unit

EDA Electronic Design Automation

EDIF Electronic Design Interchange Format

EEPROM Electrically Erasable Programmable Read Only Memory

FPGA Field Programmable Gate Array

HDL Hardware Description Language

HW Hardware

IC Integrated Circuit

IEEE The Institute of Electrical and Electronics Engineers

I/O Input / Output

IP Intellectual Property

MCU Microcontroller Unit

METU Middle East Technical University

Opcode Operation Code

xviii

OSCI Open SystemC Initiative

PC Program Counter

SP Stack Pointer

SW Software

RAM Random Access Memory

RISC Reduced Instruction Set Computer

ROM Read Only Memory

RTL Register Transfer Level

SCI Serial Communications Interface

SPI Serial Peripheral Interface

SoC System on a Chip

SRAM Static RAM

VCD Value Change Dump

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

1

CHAPTER 1

INTRODUCTION

Today’s applications require complex electronic systems that contain multiple

modules. These modules can be sub-systems, application specific integrated

circuits (ASIC), microcontrollers and memory devices around central processing

unit (CPU). Collecting all elements of a system on a circuit board is getting harder

and more expensive as the system complexities increase. Developments in VLSI

technologies allow combination of all hardware and software of systems on a

single chip. Such a system is called “System On a Chip” (SoC). SoC designs allow

significant reduction in size, design time and cost of a system. The need for SoC

approach in system design by considering increased complexities and importance

of time-to-market is presented by Kahn A. in [1].

SoC designs have both hardware and software parts. In a traditional design

approach, hardware and software of a system are designed by different teams by

using different tools. After hardware and software designs are completed, a

prototype for system is produced where hardware and software are first brought

together. Overall system tests are performed after this stage in the design flow. If

design errors are discovered in these tests, hardware and software teams refine

their designs and new prototypes of the system are re-manufactured. This cycle

repeats itself until the system verification is successful. Prototype manufacturing

is generally time consuming and expensive. This situation results in significantly

increased design time and cost of the system. Compound design (co-design)

approach targets to solve this problem. In this approach, both hardware and

software of system are designed and verified together. Preliminary system tests

2

can be performed before prototypes are manufactured. Co-designing and co-

verifying hardware and software of a system reduces the number of errors that are

discovered after prototyping and the time-to-market period of a system.

Based on the requirements and the experience, system designers can use

different languages and approaches for co-design purposes. Schulz S. et al

proposed a model based specification approach for co-design [2]. SystemC,

SystemVerilog, Verilog, VHDL and OpenVera are some examples of design

languages. Each language has its own advantages and disadvantages over the

others. For example, it is generally difficult and time consuming task to use Verilog

as a high level system design language when compared to SystemC; however low

abstraction level Verilog designs may yield more area and performance efficient

systems. As a co-design approach, more than one language can also be used in a

design flow; however interfacing subsystems that are described in different

languages is difficult. Multi-language co-design approaches and interfacing

problems of subsystems in these approaches are discussed by Benmohammed M.

and Merniz S. in [3].

Among system design languages, ability of SystemC to model hardware and

software at different abstraction levels from transaction level to register transfer

level (RTL) makes it the best candidate for co-designing and co-verifying hardware

and software of a system using single language. IEEE Standard SystemC

language has been proposed as an ANSI standard C++ class library for system

and hardware design for use by designers and architects who need to address

complex systems [4]. SystemC is actually a class library which extends C++

language with new constructs for modeling hardware components. These

constructs can be listed as modules, ports, processes, events, interfaces and

channels. It has an event-driven simulation kernel that allows concurrency of

signals. Detailed information on SystemC language, its constructs, data types and

abstraction levels can be found in [4] and [5]. SystemC designs can be

synthesized to RTL by using electronic design automation (EDA) tools; however

not all SystemC constructs are synthesizable. A subset of SystemC language that

3

is suitable for synthesis is given in [6]. Celoxica Agility Compiler [7] provides a

SystemC system level synthesis tool. It outputs to RTL for synthesis tools like

Design Compiler and optimized Electronic Design Interchange Format (EDIF) for

Altera and Xilinx FPGAs. SystemCrafter SC [8] is another software tool that

synthesizes SystemC into RTL VHDL or Verilog for Xilinx FPGAs. Synthesis of

SystemC transaction level and register transfer level designs are presented in [9]

by Calazans N. et al and area comparisons are done between RTL SystemC

description synthesis and RTL VHDL descriptions. Results showed that, area of

hardware synthesized from SystemC is comparable with area of equivalent

hardware that is synthesized from VHDL. A 4-bit microprocessor is implemented in

VHDL and SystemC RTL as a case study and these implementations are

compared in terms of easiness of the design, functional simulations, logic

optimizations and timing analysis [10]. Their results showed that SystemC is more

efficient than VHDL in terms of verification, because SystemC simulations run

faster and development of test vectors are easier.

Intellectual property (IP) cores are hardware blocks that are designed using

languages like VHDL, Verilog and SystemC. Implementations and verification of

these cores are completed before they are delivered to customers. System

designers can reduce design and verification effort by using these pre-designed

and pre-verified IP cores in their system designs. IP providers deliver cores in soft

or hard forms. Soft IP cores are descriptions of hardware that are ready to

synthesis. Hard IP cores are already synthesized and ready to manufacture.

SystemC IP cores are available and being developed all over the world. Synopsis

Inc. provides SystemC models for the PowerPC processors and a broad range of

peripherals as a part of its System Studio product [11]. CoWare Model Library [12]

from CoWare Inc. provides a collection of SystemC IP models including ARM and

MIPS processors. Open source SystemC IP cores of USB1.1 function from

Usselmann R., an area improved DES coprocessor and MD5 hash algorithm from

Villar J. C. are available in [13]. Jonsson B. suggests a JPEG encoder SystemC

implementation in [14].

4

Several SystemC IP cores have been developed in Middle East Technical

University (METU). Implementations of industry standard 80C51 compatible 8-bit

microcontroller unit by Kesen L. [15], an 16-bit RISC based MSP430

microcontroller unit by Zengin S. [16], optimized reconfigurable Viterbi decoder by

Sözen S. [17], direct digital synthesis based function generator by Kazancioglu U.

[18], analog and mixed signal modeling for PIC 16F871 microcontroller unit by

Mert Y. M. [19] are theses on SystemC IP models previously completed in the

Electrical and Electronics Engineering Department of METU.

Companies and designers that have previously developed know-how and software

for a specific microprocessor want to use this microcontroller in their new SoC

designs. This situation have arisen the need for IP cores of industry standard

microprocessors and microcontrollers. Using IP cores of a microcontroller give

system designers the ability to use their past know-how on that microcontroller in

their new SoC designs and the flexibility to remove unnecessary peripherals of

microcontroller at hand and optimize its peripherals for target system or replacing

old peripherals with the ones that use new standards. For example an old serial

communications interface can be replaced with a modern interface such as USB

2.0 or Bluetooth. Developments in IC fabrication techniques may also allow

implementation of the new microcontroller core to operate at higher frequencies

than the original one.

The objective of this thesis is to make a synthesizable SystemC implementation of

a microcontroller that is instruction set and timing compatible with industry

standard MC68HC11 [20] [21] microcontroller with its peripheral devices and to

provide a powerful simulation platform for the implemented microcontroller with a

test bench and visual interface, using co-design capabilities of SystemC. With

today’s technology, hardware of the designed microcontroller unit can be

manufactured after synthesizing the developed SystemC model to HDLs using

electronic design automation tools. MC68HC11 is selected because it is widely

used in several applications; it has commonly required peripherals and its well

designed architecture makes it a good candidate for microprocessor architecture

5

for educational purposes. In this study, it is aimed to develop a user friendly

simulator interface for configuring and running SystemC simulations of

implemented system that consists of microcontroller hardware, software and test

hardware. The developed simulator is also responsible for presenting simulation

results in an easily understandable format. This architecture can be considered as

a complete design and verification environment for MC68HC11 where

microprocessor hardware and software can be tested before hardware prototypes

including peripheral components are manufactured. Main difference of this

simulation platform from microcontroller simulators is its usability as a

synthesizable hardware model of a microcontroller.

MC68HC11 microcontroller core and its peripherals are implemented in SystemC

platform using Microsoft Visual C++ 6.0. Developed core and peripheral devices

are designed to mostly comply with the original ones. When compiled with

appropriate flags for simulation purposes, implemented microcontroller takes

simulation options and provides some information on its internal workings to

outside world by using input and output files. It reads ROM and EEPROM contents

from input files and provides internal register values, memory contents, some of its

internal signals and operation states of microcontroller CPU in each clock cycle.

Analog to digital converter module of MC68HC11 is kept out of this thesis concept

because standard SystemC language does not support modeling of analog

hardware.

A configurable test bench which employs different input and output device

modules such as serial monitor, TTL oscillators, switches and seven segment

displays, is designed in a higher abstraction level than microcontroller core. This

test bench communicates with a visual simulation program, which is designed as a

part of overall simulation environment, using input and output files. It reads test

hardware configurations and port connections from input files and writes cycle

accurate simulation results to output files. Visual simulation program is developed

using C# language in Microsoft .NET platform and is responsible for user

6

interaction in order to configure simulation environment and present simulation

results.

In Chapter 2, using SystemC for co-design and co-verification purposes is studied.

SystemC language and its capabilities are explained without much detail and how

to set up a development environment for SystemC is described step by step.

Information on original MC68HC11 family of microcontroller units is given in

Chapter 3. Operation and addressing modes of its central processing unit, its

memory devices and peripherals are described briefly.

Chapter 4 explains the SystemC implementation of MC68HC11 microcontroller

unit and its peripherals. Each SystemC module is explained separately with its

structure. This chapter also presents test results of designed modules and overall

microcontroller unit.

Developed simulation platform and SystemC implementation of developed test

bench is explained in Chapter 5. This chapter also explains the link between

SystemC implementations and visual user interface part of the developed

simulation platform.

Finally in Chapter 6, conclusions of the work are presented and directions for

future work are suggested. References are presented for further reading.

7

CHAPTER 2

USING SYSTEMC FOR HARDWARE / SOFTWARE

CO-DESIGN AND CO-VERIFICATION

2.1 Need for Hardware / Software Co-design of Systems

Today’s SoC systems may be complex structures with multiple processors, ICs

and software. They may also contain other sub-systems. Different bus interfaces

connect on-chip devices and sub-systems. Figure 2.1 is presented as a typical

example of SoC systems.

Figure 2.1: A Typical Example of SoC Systems.

8

In a traditional design flow, hardware and software parts of the systems are

designed by different teams without much interaction between these parts. Design

teams targets to achieve given specifications. Each part has its own design flow.

After each team completes designs and a prototype of hardware is manufactured,

hardware and software are brought together and overall system tests are done.

Discovering design errors at this stage of overall system design flow causes large

amounts of money time to companies because design flow of problematic parts

should be repeated until overall system is verified. If design errors are discovered

in hardware, prototyping of hardware should be done again.

Competition in the market makes a pressure on companies to reduce time-to-

market periods and costs of the systems. In order to achieve shorter design

periods without any decrease in reliability of complex systems, modeling of overall

architecture and integration of hardware and software parts should be done in

early stages of design flow. Tests of embedded systems should be done before

manufacturing hardware prototypes. Co-design technique offers designing

hardware and software parts together starting from very early stages of overall

system design flow. These parts are in interaction with each other during almost

whole design flow and they are verified together before prototyping of hardware is

done. This minimizes number of errors that are discovered after prototyping.

2.2 Using SystemC for Co-design

SystemC is an open source system design language that is based on C++

language. It is actually an ANSI standard C++ class library which is developed for

hardware and system design. It is developed by Open SystemC Initiative (OSCI).

C++ language is inadequate for describing concurrent behavior of hardware and

lacks notion of time. SystemC extends C++ library for describing hardware by

providing data types for describing hardware and structure hierarchy. SystemC

has a simulation kernel which has a scheduler that synchronizes execution of

functions in accordance with time notion and event driven architecture of functions.

9

Verification of a system generally takes too much time, in most cases verification

period may be longer than design period. This is a handicap for reducing time to

market, so simulations should be done easily and in shorter times; test benches

should be developed in less time. In order to achieve these in complex systems,

design tool should allow high abstraction levels as it gets harder and more time

consuming to design everything in a system in register transfer level. SystemC has

a great feature that it allows designing systems in high abstraction levels. This is

called system level design. Using SystemC, a designer can start modeling overall

architecture at a very high level of abstraction and refine model by lowering

abstraction level of described parts. Using very high level abstractions and than

making refinements is more difficult and sometimes impossible in other hardware

description languages (HDLs). It is also possible to keep test benches at very high

level without refining them in order to reduce design time without affecting

reliability of tests.

SystemC is a great platform for making hardware / software co-design of systems.

Because it is a class library in C++, it inherits properties of C++ language. System

designer can design both hardware and software of system using same language

and making refinements on any part of the system does not affect rest of the

system. Co-verification of hardware and software can also be done using SystemC

during design time. Figure 2.2 shows comparison of traditional design flow with

SystemC co-design flow.

10

Figure 2.2: Design Flow Comparison

11

2.3 Development Environment for SystemC

In order to start making designs using SystemC and viewing simulation result

waveforms, some tools are needed. First of all SystemC library source should be

downloaded. Downloading documentation is also recommended. SystemC is open

source and freely available at Open SystemC Initiative web site

“www.systemc.org”. During this thesis work, SystemC library version 2.1.v.1 is

used. After downloading SystemC library source, it should be compiled to

generate a library file for design environment. Any C++ compiler can be used to

generate library file. Microsoft XP is used as operating system and Microsoft

Visual C++ 6.0 is used for C++ compilation in this thesis work. Steps for compiling

source of SystemC library in Microsoft Visual C++ 6.0 are presented below.

SystemC documentation can be used as a guideline for library creation process for

different development environments.

SystemC library compilation steps:

1. Downloaded source files come in an archive file. This archive should be

extracted to any folder using a suitable archive manager program.

2. In Microsoft Visual C++, “Open Workspace…” menu item under “File”

menu should be clicked and “systemc.dsw” file should be selected by

browsing into “msvc60\SystemC” directory which is under the directory

where library source files are extracted.

12

Figure 2.3: “Open Workspace” Menu Item in Microsoft Visual C++

3. Workspace file is adjusted for compilation of SystemC library in

Microsoft Visual C++. Selecting “Build systemc.lib” under “Build” menu

is enough for compilation of the library.

Figure 2.4: Building SystemC Library

13

For creating a SystemC project, a new empty Win32 console application should be

created first. After creating a new project, some adjustments should be done on

this project options for SystemC compilation. Below are steps of creating a

SystemC design in Microsoft Visual C++. Compiler documentation can be referred

for better understanding.

SystemC project creation steps in Microsoft Visual C++:

1. A new, empty C++ project is created by using “New” menu item under

“File” menu and selecting “Win32 Console Application” option.

2. “Enable Run-Time Type Information (RTTI)” checkbox should be

checked by selecting “C++ Language” category in “C/C++” tab under

“Settings” menu item of “Project” menu. This is shown in Figure 2.5.

Figure 2.5: Enabling Run-Time Type Information

14

3. For using SystemC data types and functions, SystemC library should

be used in link step. Under “Projects” menu and “Settings” menu item,

“Link” tab should be selected and “systemc.lib” should be added to the

“Object / library modules” list. This is presented in Figure 2.6 below.

Figure 2.6: Including SystemC Library to Library List

4. Include file and library directory search paths should be added to

project. For doing this, “Settings” menu item is selected under “Project”

menu. Under “C/C++” tab, “Preprocessor” category is selected and path

of “src” directory which is in extracted SystemC library directory is

entered in text field into area labeled “Additional include directories”.

Path to SystemC library which is under “msvc60\systemc\debug”

directory in extracted SystemC library directory is entered in “Additional

library path” text box under “Input” category in “Link” tab.

15

5. Project settings are completed for SystemC compilation. After adding

source files to created project and developing SystemC model, “Build“

menu can be used for generating executable program file of developed

model.

If SystemC code is written appropriately for value change dump (.vcd) file

generation, which is achieved by using “sc_trace” method of SystemC library,

executable file will generate a “.vcd” file (also called trace file) that contains

simulation waveforms of selected signals. There are different programs that can

be used to view these trace files. In this thesis “GTKWave” application is used for

this purpose. In order to see waveforms in GTKWave, “Search -> Signal Search

Tree” menu should be accessed and signals that are wanted to be shown on

screen should be selected and inserted. Figure 2.7 shows an example screenshot

from GTKWave for inserting signals.

Figure 2.7: Inserting Signals in GTKWave.

16

CHAPTER 3

M68HC11 FAMILY OF MICROCONTROLLER UNITS

MC68HC11 microcontroller is briefly explained in this chapter with its core and

peripheral functions. Reader can refer to M68HC11 E Series datasheet [20] and

M68HC11 reference manual [21] for more detail.

3.1 General Description

M68HC11 is a family of 8-bit general purpose microcontroller units. Members of

this family differ from each other with small differences in their components. In this

thesis a SystemC design best matches to this microcontroller unit family members

is done. MC68HC11E9 microcontroller unit which is a M68HC11 family member is

chosen as a model. MC68HC11E9 is chosen because it has most of the

peripherals available in the family, it is used in Motorola Semiconductors

Evaluation Board (EVBU) which is used widely for educational purposes and vast

amount of information on this model is available.

There are different packaging options for different members of M68HC11 family of

microcontroller unit. For MC68HC11E9 52-pin plastic leaded chip carrier (PLCC),

52-pin windowed ceramic-leaded chip carrier (CLCC), 64-pin quad flat pack

(QFP), 52-pin thin quad flat pack (TQFP) and 56 pin shrink dual in-line package

(SDIP) options are available. Most of the pins serve at least two different functions.

Pin assignments for 52-pin PLCC package option of MC68HC11E9 are presented

in Figure 3.1.

17

Figure 3.1: MC68HC11E9 Pin Assignments

MC68HC11E9 can operate at external clock frequencies up to 8 MHz which

generates up to 2 MHz of internal bus clock. It has peripheral functions including

an 8-channel A/D (analog-to-digital) converter which has 8-bits of resolution, an

asynchronous serial communications interface (SCI), a synchronous serial

peripheral interface (SPI), a 16-bit, free running main timer system with three

input-capture lines, five output compare lines and a real-time interrupt function. An

8-bit pulse accumulator subsystem that can count external events or measure

externally applied signal periods is also included in MC68HC11E9. On-chip

memory systems of MC68HC11E9 include 8 Kbytes of read-only memory (ROM),

512 bytes of electrically erasable programmable ROM (EEPROM) and 256 bytes

of random access memory (RAM). These peripherals and on-chip memory can be

seen on block diagram of MC68HC11E9 in Figure 3.2

18

Figure 3.2: Block Diagram of MC68HC11E9

19

3.2 Operation Modes of MC68HC11

MC68HC11 microcontroller unit has two main operation modes. These are:

• Single-chip operation mode

• Expanded operation mode

Each of these main operation modes also has two variations. These variations are

called normal and special variations. All operation modes are listed below:

• Normal single-chip operation mode

• Special bootstrap mode (special variation of single-chip mode)

• Normal expanded operation mode

• Special test mode (special variation of expanded operation mode)

In normal single-chip mode of operation everything that will be accessed using

address and data buses is assumed to be contained in microcontroller chip. There

are no external memory elements or peripherals in this mode of operation.

Normal variation of expanded operation mode is used for accessing external

memory and/or peripherals. In this mode of operation, address/data bus is

multiplexed and available on port B and port C pins. Normal expanded mode of

operation has two additional control pins.

20

Special bootstrap mode is used for downloading programs into on-chip RAM at

startup using asynchronous serial communications interface (SCI). Special test

mode generally used for factory testing of microcontroller.

3.3 On-Chip Memory Systems

MC68HC11 microcontroller unit includes 512 bytes of random access memory

(RAM), 12 Kbytes of program (user) read-only memory (ROM), 192 bytes of

bootloader ROM and 512 bytes of electrically erasable programmable ROM

(EEPROM). Other members of M68HC11 family may have different sizes of RAM,

ROM and EEPROM memories. ROM or EEPROM memories are not included or

disabled in some variations of microcontroller units in M68HC11 family. Memory

map of MC68HC11E9 is presented in Figure 3.3.

Figure 3.3: Memory Map of MC68HC11E9

21

3.3.1 Read-Only Memory (ROM)

There are two read only memories (ROMs) on MC68HC11 microcontrollers. One

of them is called program ROM or user ROM and the other one is bootloader

ROM.

As its name implies, program ROM contains instructions of user’s program.

Program ROM is not writable or changeable by user after fabrication, so

instructions of program are stored into this memory when the microcontroller unit

is manufactured. Program ROM occupies 12 Kbytes in 64 Kbytes memory space

of microcontroller unit. User may disable on-chip ROM if not needed. If ROM is

disabled it does not occupy area in memory space anymore.

Other read-only memory included in MC68HC11 microcontrollers is 192 byte

bootloader ROM. This memory unit is used for loading bootloader program in

special bootstrap mode. In normal operation modes, bootloader ROM is disabled

and does not occupy any area in memory space of microcontroller.

3.3.2 Random-Access Memory (RAM)

Random access memory can be thought as a temporary storage space during run-

time. User’s program accesses to this memory during execution and uses this

memory space for storing and reading variables for making operations on them.

RAM occupies first 512 bytes of memory space normally, but it can be mapped to

beginning of other blocks of memory space in first 64 CPU cycles of

microcontroller operation.

22

3.3.3 Electrically Erasable Programmable ROM (EEPROM)

EEPROM allows user to store and change programs when needed after

manufacturing of microcontroller unit is completed. With the help of this memory

unit, user programs may be updated at any time.

MC68HC11E9 has 512 bytes of on-chip EEPROM. In MC68HC11 microcontrollers

in addition to this EEPROM unit, there is another EEPROM byte which is used for

controlling some basic features. This EEPROM byte is named as “CONFIG”

register.

EEPROM in the MC68HC11E9 is fixed at locations $B600-$B7FF. Reads from

EEPROM memory can be done by a read operation from address of location to be

read. Writes to EEPROM is controlled by EEPROM programming register

(PPROG). For writing to a location, first EEPROM programming voltage should be

enabled using EEPGM bit in PPROG register, then write operation should be

performed to the location and finally EEPROM programming voltage should be

disabled again. There are different ways to erase EEPROM locations. These are;

“byte erase”, in which EEPROM locations are erased one by one; “row erase”, in

which EEPROM locations are erased in rows and finally “bulk erase” in which all

bytes of EEPROM are erased at once. These methods are not applicable to

erasure of CONFIG register.

3.4 Central Processing Unit (CPU)

MC68HC11 microcontrollers utilize M68HC11 central processing unit (CPU). CPU

is responsible for executing software instructions in their programmed sequence.

There are 235 different operation codes (opcodes) in M68HC11 instruction set,

using page-select prebytes before opcodes, some new instructions are specified

and a total number of 310 instructions are reached.

23

The M68HC11 CPU accesses all input/output, peripheral and memory locations as

any location in memory space. This technique of access is called memory-mapped

I/O.

M68HC11 CPU contains two accumulators named accumulator A and B.

Accumulators A and B form double accumulator D together. There are two index

registers (IX and IY) in CPU which are generally used for calculating indexed

addresses. Stack pointer (SP), which is a CPU register, always points to next free

location of stack area. Program Counter register (PC), as its name implies, holds

address of next program instruction. Condition code register (CCR) holds status

indicator flags that indicate status of CPU after last instruction is executed. Table

3.1 shows internal registers of M68HC11 central processing unit.

Table 3.1: Internal Registers of M68HC11 CPU

Register Explanation

Accumulator A 8 bit accumulator

Accumulator B 8 bit accumulator

Double Accumulator D Concatenation of accumulators A and B (A:B)

Index Register IX 16 bit index register

Index Register IY 16 bit index register

Stack Pointer (SP) 16 bit stack location pointer

Program Counter (PC) 16 bit program instruction pointer

Condition Code Register (CCR) 8 bit register with status indicators, interrupt
masking bits and STOP disable bit.

24

Five status indicators in condition code register give some information on

execution and results of instructions. Two interrupt masking bits are used for

masking global interrupts and interrupts generated from XIRQ pin. STOP disable

bit is used for avoiding STOP instruction to stop microcontroller operation. Table

3.2 summarizes meanings of flags in condition code register.

Table 3.2: Condition Codes Register

CCR Bit Bit
Location

Meaning

Carry (C) 0 A carry out or borrow has occurred as a

result of operation.

Overflow (V) 1 Indicates a two’s complement overflow

condition as a result of operation.

Zero (Z) 2 Informs whether the result of operation is

zero or not.

Negative (N) 3 Indicates that result of the operation is

negative.

I Interrupt Mask (I) 4 Disables all maskable interrupts.

Half Carry (H) 5 Set if carry from bit 3 has occurred.

X Interrupt Mask (X) 6 Disables XIRQ pin interrupt.

STOP Disable (S) 7 Disables STOP instruction.

25

3.5 Addressing Modes

M68HC11 uses six different ways for accessing memory. These are called

“addressing modes”. Addressing modes are techniques for calculating address

information for memory access. Different modes of addressing in M68HC11 are

immediate, extended, direct, indexed, inherent and relative addressing modes.

These are studied in detail in following subsections.

3.5.1 Immediate Addressing Mode

In immediate addressing mode there is no need to calculate an effective address

to access data. Data needed is contained in bytes following opcode. Number of

data bytes is specific to opcode.

3.5.2 Extended Addressing Mode

In the extended addressing mode, two bytes following the opcode are effective

address of the data needed. No other calculations are needed; reading these two

bytes is enough for knowing effective address.

3.5.3 Direct Addressing Mode

Direct addressing mode which is also called “zero page addressing mode” is used

for accessing only to first 256 locations of memory space. High order byte of

effective address is zero and low order byte of the effective address is contained in

byte following the opcode.

26

3.5.4 Indexed Addressing Mode

In the indexed addressing mode, an offset value is contained in the byte following

the opcode. Effective address is calculated by adding this offset value to one of

the index registers. Information on which index register will be used for address

calculation is specific to opcode.

3.5.5 Inherent Addressing Mode

In the inherent addressing mode no address information is needed because

actually no addressing is done. Information on operands is available in opcode.

3.5.6 Relative Addressing Mode

Relative addressing mode is used for accessing a location within a range of ±128

relative to program counter. Offset to program counter is available in the byte

following the opcode. This offset value is actually a signed byte. Relative

addressing mode is only used for branching program execution purposes.

3.6 Parallel Input / Output (I/O)

The MC68HC11E9 has five input / output (I/O) ports and 40 I/O pins that are

shared between these ports. All I/O pins also have alternative functions. These

alternative functions are used by peripheral systems of microcontroller unit. Input /

output ports are named port A to port E. Number of pins on these ports may not be

equal to each other. Some of these pins are fixed-direction input or fixed-direction

output pins and some of them are bidirectional pins.

27

3.6.1 Data Ports

Port A is an 8-bit port with three fixed-direction input pins, four fixed-direction

output pins and one bidirectional pin. Port A pin 7 can be configured as input or

output port using DDRA7 bit in PACTL register. Port A pins can be used as

general purpose input/output pins and they also have alternative functions. Table

3.3 summarizes alternative functions of port A pins.

Table 3.3: Summary of Port A Pins

Pin GPIO feature Alternative function(s)

PA0 Fixed-direction input Input capture

PA1 Fixed-direction input Input capture

PA2 Fixed-direction input Input capture

PA3 Fixed-direction output Output compare

PA4 Fixed-direction output Output compare

PA5 Fixed-direction output Output compare

PA6 Fixed-direction output Output compare

PA7 Bidirectional Pulse accumulator input / Output compare

Port B and port C actually function together with STRA and STRB pins of

microcontroller unit. These ports and pins are all together form handshake I/O

28

subsystem in single-chip mode and multiplexed address/data bus in expanded

mode. Information on handshake I/O subsystem can be found in section 3.6.2.

Port B is an 8-bit port which has all of its pins as fixed-direction outputs. As these

pins can be used for general purpose output, they also have alternative functions

in expanded operation mode. Port B is a part of handshake I/O subsystem.

Handshake I/O properties of port B is summarized in section 3.6.2. In expanded

operation mode, port B serves as high order byte of address information. Table 3.4

presents functions of port B pins.

Table 3.4: Summary of Port B Pins

Pin GPIO feature Alternative function(s)

PB0 Fixed-direction output Address bus bit 8 (A8)

PB1 Fixed-direction output Address bus bit 9 (A9)

PB2 Fixed-direction output Address bus bit 10 (A10)

PB3 Fixed-direction output Address bus bit 11 (A11)

PB4 Fixed-direction output Address bus bit 12 (A12)

PB5 Fixed-direction output Address bus bit 13 (A13)

PB6 Fixed-direction output Address bus bit 14 (A14)

PB7 Fixed-direction output Address bus bit 15 (A15)

29

Port C is an 8-bit port. All pins of port C can be used as bidirectional general

purpose input/output pins. Port C is a part of handshake I/O subsystem. In

expanded mode of microcontroller operation, this port is used for multiplexed

address / data bus. Table 3.5 lists functions of port C pins.

Table 3.5: Summary of Port C Pins

Pin GPIO feature Alternative function(s)

PC0 Bidirectional Address / data bus bit 0 (AD0)

PC1 Bidirectional Address / data bus bit 1 (AD1)

PC2 Bidirectional Address / data bus bit 2 (AD2)

PC3 Bidirectional Address / data bus bit 3 (AD3)

PC4 Bidirectional Address / data bus bit 4 (AD4)

PC5 Bidirectional Address / data bus bit 5 (AD5)

PC6 Bidirectional Address / data bus bit 6 (AD6)

PC7 Bidirectional Address / data bus bit 7 (AD7)

Port D is a 6-bit bidirectional parallel data port. Two of port D pins alternatively

function as part of asynchronous communications interface (SCI) subsystem.

Other four pins alternatively function as a part of synchronous serial peripheral

interface (SPI) subsystem. All six pins of port D can also be used for general

purpose input/output functions. Summary on port D functions can be found in

Table 3.6.

30

Table 3.6: Summary of Port D Pins

Pin GPIO feature Alternative function(s)

PD0 Bidirectional SCI Receive data (RxD)

PD1 Bidirectional SCI Transmit data (TxD)

PD2 Bidirectional SPI Master in / slave out (MISO)

PD3 Bidirectional SPI Master out / slave in (MOSI)

PD4 Bidirectional SPI Master clock out (SCK)

PD5 Bidirectional SPI Slave select (SS)

Port E is an 8-bit fixed-direction input port. Pins of port E alternatively function as

analog-to-digital (A/D) converter channel inputs.

3.6.2 Handshake I/O Subsystem

Handshake I/O subsystem is used for sending and receiving data to external

devices in a more guaranteed way than normal parallel I/O. Ports B and C, STRA

input pin, STRB output pin are parts of this subsystem. Each device or only one

device that takes place in data transfer informs other side when it reads and/or

writes data to port. Operation mode of handshake I/O subsystem determines

handshaking rules. Operation modes are called simple strobe mode, full-input

handshake mode and full-output handshake mode.

In simple strobe mode, port B is used as a simple output port which works together

with STRB strobe output and port C is used as a simple latching input together

31

with STRA strobe input. Input and output work independent of each other. In

simple strobe mode of handshake operation, a strobe signal is generated at STRB

pin whenever a data is written to port B. Data is read from port C and latched

when an active edge is encountered at STRA input.

Only port C, STRA and STRB pins are used in full-input handshake mode. In this

mode, a selected edge at STRA input causes data on port C to be latched into a

register and negation of STRB output. When the latched data is read in

microcontroller, STRB output is asserted again to indicate that data reception is

complete. In this mode, external system knows when to write data on port C using

STRB information. As a summary, data sending system informs receiving system

when it writes data to port and data receiving system informs data sending system

when it reads data from port.

In full-output handshake mode, external system is informed via STRB pin when a

data is written on port C and ready signal is read from STRA pin which indicates

that external system has read data from port. Full-output and full-input handshake

modes can be though as two different ends of data receiving and sending

systems. Full-output handshake mode has a variation named three-state full-

output handshake mode. In this mode, port C pins becomes driven outputs when

STRA goes to its active level.

3.7 Synchronous Serial Peripheral Interface (SPI)

Synchronous serial peripheral interface (SPI) can be used for communicating

other microcontroller units or peripheral devices. SPI system can be configured as

master or slave. If it is configured as master, communication speed can be as high

as 1 Mbps and if it is configured as slave communication speed can be as high as

2 Mbps.

In an SPI transfer, a clock, which is generated by master device, synchronizes

shifting and sampling jobs. Shifting out of data and sampling of incoming bit occurs

32

at opposite edges of clock line, so reception and transmission occurs

simultaneously. Any slave device which is not selected via slave select input does

not read or write data from / to SPI bus.

In an SPI system only one master bus should be in communication network at a

moment. When SPI system is configured as a master and another device

becomes bus master, this situation is detected and SPI output drivers are disabled

to avoid harms. Error detection system which detects this condition is named

“multiple-master fault detector”. There is another error detector in SPI which is

called “write-collision detector”. This system detects and avoids a write attempt to

serial shift register while a transfer is in progress.

There are two different transfer formats of SPI system and these transfer formats

have two different clock polarity variations. Figures 3.4 and 3.5 which are taken

from “MC68HC11 Reference Manual” presents timing diagrams of CPHA equals

zero and CPHA equals one SPI transfer formats respectively.

Figure 3.4: CPHA Equals Zero SPI Transfer Format

33

As seen in Figure 3.4, in CPHA equals zero transfer format, transfer is started

when SS line goes to low. When CPHA equals one transfer format is selected,

transfer is started with first selected clock edge. SS line should be low for both

transfer formats.

Figure 3.5: CPHA Equals One SPI Transfer Format

3.8 Asynchronous Serial Communications Interface (SCI)

Asynchronous serial communications interface (SCI) used in MC68HC11

microcontrollers is full-duplex and uses one start bit, eight or nine data bits, one

stop bit none return to zero (NRZ) transfer format. SCI system has a transmitter

and a receiver part. Although they use same transfer formats and same baud

rates, transmitter and receiver parts of SCI system operate independent from each

other. Baud rates are generated using PH2-clock of microcontroller unit.

Transmitter of SCI is double-buffered so a character can be written to transmit

buffer while transmission of a character is in progress. Break and idle characters

can be queued for transmission. Transmitter can generate “transmit complete”

34

interrupt when it finishes sending all data in its queue or “transmitter data register

empty” interrupt when transmit data register is available for new character.

Receiver of SCI system is also double-buffered, so software has some time to

read received character before next character is received. Receiver can go to

sleep mode and wake-up when selected event occurs on line. Wake-up can be

initiated by an idle-line or address-mark detection in received data. SCI receiver of

MC68HC11 has an advanced noise detection and correction technique. This

technique is called “data sampling technique”. Receiver samples line data with a

clock frequency of 16 times the baud rate and uses these samples to decide logic

level of received bit. A start bit is recognized if a zero is sampled after three ones

and at least two of third fifth and seventh samples are zeroes. Reception is

synchronized to start bit in this way. Other bits are recognized by using eighth

ninth and tenth samples taken. If at least one of these samples does not agree

with others, noise flag is set. Received bit is decided by using majority of samples.

Generally detection would be correct even there is noise on line.

Figure 3.6: Start Bit Reception

35

Figure 3.6 shows an example of start bit detection with some noise on line.

Although in this example start bit is received correctly, there may be some shifts in

locations of perceived and actual start bits due to amount of noise on line. If these

shifts are in an acceptable range, data sampling is expected to correctly receive

rest of incoming character.

3.9 Main Timer and Real Time Interrupt

Main timer system has a free running 16-bit counter. Counting frequency of this

counter can be programmed by user. Main time system includes three input

capture and four output compare subsystems, real time interrupt logic and

computer operating properly (COP) watchdog timer.

Input capture function records value of free running counter when a selected edge

is detected on corresponding input line. Input capture functions can generate

interrupt requests. This feature of input capture functions can be used for

measuring period or length of a signal on input pin.

Output compare functions generate an output when selected time has been

reached. In order to do this, an output compare register is loaded with 16-bit value

and when free running counter reaches to this value, a signal is outputted to

indicate the condition. Output compare functions can also generate interrupts

when selected count is reached by free running counter.

Computer operation properly (COP) watchdog timer function is used for resetting

microcontroller if a software error occurs. COP timer counts up with user selected

frequency and when it overflows microcontroller reset signal is generated

automatically. Software which is running properly should touch to COP timer and

clear it if COP is enabled. COP overflow means that software is not running

properly so it could not clear COP timer, so microcontroller should be reset to

correct this situation with a fresh startup.

36

Real time interrupt logic generates hardware interrupts with a user defined period.

RTI can be used for sharing microcontroller time between different tasks for multi-

tasking.

3.10 Pulse Accumulator

Pulse accumulator is actually an 8-bit counter that is used for counting selected

events or gated time accumulation. It can generate interrupt requests at every

event detected or when overflow occurs in 8-bit counter.

In event counting mode, pulse accumulator counts number of edges signal on PAI

input. It can be configured to count positive or negative edges.

In gated time accumulation mode, 8 bit counter is incremented at every 64 E-clock

cycles of microcontroller. The name “gated” comes from the feature that, counting

operation is gated to PAI input. That means counting stops if PAI input is not its

selected level. This feature can be used to measure durations of events.

37

CHAPTER 4

DESIGN OF MC68HC11 MICROCONTROLLER MODEL

USING SYSTEMC

The object oriented nature of SystemC allows parts of a system to be designed as

separate modules. These modules can also be divided into sub modules. This

ability of SystemC allows unnecessary modules to be extracted from the whole

design, adding new modules to the design and using different abstraction levels

within different modules. Opportunity to use different abstraction levels for different

modules makes it possible to refine modules of a system independently without

affecting rest of the design.

In this thesis, the MC68HC11 microcontroller unit is divided into sub modules and

each sub module is implemented in SystemC as a part of overall microcontroller

system. These sub modules are, address bus controller, clock generator,

arithmetic and logic unit, controller unit, handshake I/O sub-system, timer system,

RAM, ROM, register file and serial communications modules. SystemC modules

have been shaped according to design complexity, similarities and common

requirements of peripherals in microcontroller unit. Modules that constitute

microcontroller core are tested and verified before they are brought together.

Although original MC68HC11E9 model has an analog to digital converter

subsystem; SystemC design made in this thesis does not contain analog to digital

converter module because standard SystemC library does not have data types for

modeling analog hardware.

38

SystemC implementation of MC68HC11 microcontroller unit is explained in this

chapter. Internal structure of designed microcontroller is given. Modules that

construct microcontroller are explained and their test results are presented.

4.1 MC68HC11 SystemC Model Internal Structure

Inside the MC68HC11 microcontroller model, all modules are interconnected to

each other by internal signals. Correct timing of these internal signals is very

important for correct operation of overall microcontroller model. Internal signals

may be divided into four categories mainly. These are internal clock signals that

synchronize modules with each other, control bus signals that are used for

maintaining correct operation of modules, data bus signals that carry data and

address bus signals that carry address information for memory modules. Internal

structure of MC68HC11 SystemC model and interconnections between modules

are presented in Figure 4.1 without much detail.

The developed SystemC model of MC68HC11 is verified using the test code that

is given in Appendix B. This test code contains all addressing modes and all types

of instructions. The test pogram has been run on original MC68HC11 EVBU board

in microprocessor design laboratory of METU electrical and electronics

engineering department. Test results that are presented in Appendix B verified that

implemented microcontroller is working same as the original microcontroller.

39

Figure 4.1: Internal Structure of MC68HC11 SystemC Model

40

Figure 4.2 shows datapath of the microprocessor. Source of the data that will be

processed can be register file or data bus.

Figure 4.2: Datapath of Microprocessor

4.2 CPU Controller Unit

CPU controller unit module is central controlling element of MC68HC11 model.

This module is responsible for generating appropriate control signals for other

modules and to maintain correct operation of overall system. CPU controller unit

chooses correct signals with correct timing for other modules, according to state of

microcontroller, events occurring and instruction that is being executed. This

module actually consists of a state machine that is performing different tasks at

different clock edges. These tasks include opcode fetching, instruction decoding,

selecting arithmetic logic unit parameters and deciding owners of data and

address buses. A simple block diagram of CPU controller is shown in Figure 4.3.

41

Figure 4.3: Block Diagram of CPU Controller

Synchronization between different modules of MC68HC11 model is done using

four internal clock cycles which constitute a bus cycle (E-Clock cycle). Modules

perform different jobs in each of these four internal clock cycles. Main processes

of CPU controller unit are sensitive to all of these four clock cycles and generate

different signals and perform different tasks at each clock cycle. Figure 4.4 shows

these four internal clock cycles.

Figure 4.4: Internal Clock Cycles of a Bus Cycle

42

As seen in Figure 4.4, internal clock cycle 1 starts with negative edge of E-clock,

cycle 2 starts with positive edge of PH2 clock, cycle 3 starts with positive edge of

E-clock and cycle 4 starts with negative edge of PH2 clock.

At negative edge of E-clock which is called first edge, controller unit sends

commands to register file module for incrementing, decrementing or not changing

program counter and stack pointer. At positive edge of PH2 clock which is called

second edge, chip select and read/write signals for RAM and ROM, data bus

owner select signal, register file output select signal, ALU command, instruction

type and B operand select signals, CCR mask information for instruction that is

being executed are sent to interested modules. At positive edge of E-clock which

is called third edge, condition code register is read, carry information is sent to

ALU and address bus owner is selected. At fourth cycle, instruction is fetched and

decoded if controller is in fetch state. Input source and destination for register file

is selected.

An instruction execution consists of at least 2 bus cycles and at most 41 bus

cycles. Instruction is fetched and decoded in first bus cycle and executed in the

remaining cycles.

Other modules of MC68HC11 SystemC model are synchronous to these four

internal clock cycles. Generally CPU controller unit puts a signal one or two clock

cycles before that signal is read by target module. This guarantees a setup time

for signals before they are being read. CPU controller unit decides signal values

according to states of CPU. Different states of CPU are presented in Table 4.1

with explanations.

43

Table 4.1: CPU States

CPU State Explanation

START Starting state of CPU. Internal register are loaded with
their initial values. Devices are set to their initial states of
operation.

Opcode Fetch Opcode is fetched from memory.

Opcode Fetch 2 If first fetched opcode was page information, actual
opcode is fetched from memory again.

Read Extended Addr. High High order byte of effective address value in extended
addressing mode is read from memory.

Read Extended Addr. Low Low order byte of effective address value in extended
addressing mode is read from memory.

Calculate Ind. Addr. Low Low order byte of effective address value in indexed
addressing mode is calculated.

Calculate Ind. Addr. High High order byte of effective address value in indexed
addressing mode is calculated.

Calculate Rel. Addr. Low Low order byte of effective address value in relative
addressing mode is calculated.

Calculate Rel. Addr. High High order byte of effective address value in relative
addressing mode is calculated.

Read Direct Address Low order byte of effective address value in direct
addressing mode is read from memory.

8 Bit Execution An 8 bit operation is executed.

Arith. 16 Bit Execution Low Low order byte of 16 bit arithmetic operation is executed.

Arith. 16 Bit Execution High High order byte of 16 bit arithmetic operation is executed.

Logic 16 Bit Execution Low Low order byte of 16 bit logical operation is executed.

Logic 16 Bit Execution High High order byte of 16 bit logical operation is executed.

44

Read Operand Operand is read into temporary register for use in
following cycles of operation.

Read Execution Operand An operand is read into temporary register that will be
used for execution in following cycles of operation.

Write Memory 1 Result of operation is being prepared to write to memory.

Write Memory 2 Result of operation that is prepared in Write Memory 1
state is stored into memory.

Multiplication CPU is performing a multiplication operation.

Integer Division CPU is performing an integer division operation.

Fractional Division CPU is performing a fractional division operation.

Stack Operation An operation on stack space is being executed.

Stack Operation INCSP An operation on stack space is being executed with
incrementing stack pointer at the same time.

Push Data Data is pushed onto stack.

Pull Data Data is pulled from stack.

Set Interrupt Mask Interrupt mask is set.

Load Interrupt Vector Interrupt vector is loaded to program counter after an
interrupt occurred.

TEST TEST instruction has put CPU in TEST state. CPU stays
in this state until a reset.

ERROR CPU should never be in this state. If CPU enters into this
state that means an error has occurred.

45

4.3 Clock Divider

Figure 4.5: Clock Divider Symbol

Clock divider module takes external clock source as an input for generating

internal clock signals and address strobe (AS) signal. Figure 4.5 shows input and

output ports of clock divider. Internal clock signals of MC68HC11 MCU model are

phase-1 (PH1) clock, phase-2 (PH2) clock and E-clock. Frequencies of PH1, PH2

and E-clock signals are equal to each other and ¼ of the frequency of external

clock input. PH1 and PH2 clocks are 180 degree shifted versions of each other. E-

clock lags 90 degrees behind PH2 clock. AS signal low-to-high transition (positive

edge) lags behind E-clock negative edge with a 45 degrees phase difference and

AS signal remains high for a time equal to one external clock period.

46

Figure 4.6: Internal Clock Signals of MC68HC11

For verification of clock divider module, external clock signal (XTAL_Clock) with a

frequency of 2 MHz is applied to the module input and outputs of the module are

observed. Internal clock signals of original MC68HC11 MCU are presented in

Figure 4.6. Resulting input and output signals waveforms of clock divider module

simulation are shown in Figure 4.7.

Figure 4.7: Resulting Waveforms of Clock Divider Simulation

47

4.4 Arithmetic and Logic Unit (ALU)

ALU performs arithmetic and logic operations. It takes operands, command code,

carry and instruction type as inputs, executes operation that is specified by

command code and outputs result and condition codes. Input and output ports of

ALU are shown in Figure 4.8. ALU uses an “instruction type” input (alu_instr_type)

for deciding if the operation is 8-bit operation or high order part of a 16-bit

operation. Since ALU can perform only 8-bit operations, for making 16-bit

operations alu_instr_type is used in order to specify whether current operands are

low order or high order operands.

Figure 4.8: Arithmetic and Logic Unit Symbol

MC68HC11 model actually contains another module related to ALU, which is

named ALU input multiplexer. This is a small module that takes two 8-bit inputs

from register file and data bus and outputs one of them to arithmetic logic unit

according to select signal that is asserted by controller unit.

48

Figure 4.9: ALU Block Diagram

Block dagram of Arithmetic and logic unit is presented in Figure 4.9. ALU is

synchronous and main process of this module is sensitive to negative edge of

PH2-clock input. Different commands and corresponding operations are listed in

Table 4.2.

49

Table 4.2: ALU Commands and Meanings.

ALU Commands

Name Code Operation

nop_cmd 0x00 No operation

add_cmd 0x01 Addition of operand A to B without carry

inc_cmd 0x02 Increment operand A by one

sub_cmd 0x03 Subtraction of operand B from A without borrow

dec_cmd 0x04 Decrement operand A by one.

and_cmd 0x05 Logical AND operation on operand A and operand B

or_cmd 0x06 Logical OR operation on operand A and operand B

xor_cmd 0x07 Logical XOR operation on operand A and operand B

com_cmd 0x10 Take one’s complement of operand A

neg_cmd 0x11 Take two’s complement of operand A

lsl_cmd 0x0B Logical shift left

asr_cmd 0x0C Arithmetic shift right

lsr_cmd 0x0D Logical shift right

rol_cmd 0x0E Rotate left

ror_cmd 0x0F Rotate right

daa_cmd 0x12 Decimal adjust accumulator

addwc_cmd 0x08 Add operands with carry

subwc_cmd 0x09 Subtract operand B from operand A with borrow

clr_cmd 0x0A Clear all bits

50

addsigned_cmd 0x13 Make signed addition between operands

andinv_cmd 0x14 AND inverted version of operand A with operand B

andinv2_cmd 0x15 AND inverted version of operand B with operand A

tst_cmd 0x19 Subtract operand B from operand A. Status flags are

different from standard subtraction.

strmul_cmd 0x16 Start multiplication.

mul_cmd 0x17 Do multiplication.

end_mul 0x18 End multiplication, give result.

ldn_cmd 0x1A Load numerator for integer division.

ldfdivn_cmd 0x1F Load numerator for fractional division.

div_cmd 0x1B Do division.

divresQ_cmd 0x1C End division, give quotient.

divresR_cmd 0x1D Give remainder of division operation.

fdivsub_cmd 0x1E Do subtraction step of fractional division.

51

In order to verify ALU, a test bench that outputs all ALU commands and operands

choosen for boundary condition testing is designed. Using this test bench,

arithmetic and logic unit is verified. Figure 4.10 shows some part of the test

results.

Figure 4.10: Arithmetic and Logic Unit Test Results

Waveforms of test results for different instructions are given in Figures 4.11 to

4.24. ALU Operands and operations results can be seen in these figures. Results

of the tests verify that ALU is operating correctly.

52

Figure 4.11: ALU Addition Test Waveforms

Figure 4.12: ALU Increment Test Waveforms

Figure 4.13: ALU Subtract Test Waveforms

53

Figure 4.14: ALU Decrement Test Waveforms

Figure 4.15: ALU AND Operation Test Waveforms

Figure 4.16: ALU OR Operation Test Waveforms

54

Figure 4.17: ALU XOR Operation Test Waveforms

Figure 4.18: ALU Complement Test Waveforms

Figure 4.19: ALU Negate Test Waveforms

55

Figure 4.20: ALU Arithmetic Shift Right Test Waveforms

Figure 4.21: ALU Arithmetic / Logical Shift Left Test Waveforms

Figure 4.22: ALU Logical Shift Right Test Waveforms

56

Figure 4.23: ALU Rotate Left Test Waveforms

Figure 4.24: ALU Rotate Right Test Waveforms

4.5 Register File

Register file contains all CPU related registers. Accumulators A and B, index

registers X and Y, program counter (PC), stack pointer (SP), condition codes

register (CCR) are contained in this module. Register file also contains some

temporary registers that are used for different purposes like holding address

values or ALU operands temporarily. Inputs and outputs of register file are

controlled by CPU controller unit. This module is synchronous and performs

57

additional tasks like incrementing program counter, incrementing or decrementing

stack pointer or exchanging registers. Input and output ports of register file module

are given in Figure 4.25.

Figure 4.25: Register File Symbol.

User available registers contained in register file module are listed below:

• ACCD : 16-bit accumulator D register that consists of accumulator A

(ACCA) and accumulator B (ACCB).

• IX : 16-bit index register X

• IY : 16-bit index register Y.

• SP : 16-bit stack pointer register.

• PC : 16-bit program counter register.

• CCR : 8-bit condition codes register.

58

A register file test bench is developed for verification of register file. This test

bench performs tests on register file by writing values to its registers and than

using these values in registers for address outputs or data outputs. Outputs of

register file are compared with previously written values. Figure 4.26 shows

resulting waveforms and Figure 4.27 shows console output of simulation.

Figure 4.26: Register File Test Waveforms

59

Figure 4.27: Register File Test Console Outputs

60

4.6 Address Bus Controller

Address bus controller module is designed to put correct address on address bus.

This module takes select inputs from CPU controller unit and using these inputs,

determines source of address information and asserts chip select signals to

memory units. Source of address information can be outputs of register file, ALU

result or data bus. Address bus controller also includes INIT and PPROG

registers. “InitWriteTimeout” input is tied to CPU controller unit and informs this

module that 64 cycles has passed after start of microcontroller operation, so INIT

register is not writable anymore. This module is synchronous and sensitive to PH2

and E-clock signals. Address bus controller takes two inputs from register file, one

input from arithmetic and logic unit and one input from data bus. Input and output

ports of this module are given in Figure 4.28.

Figure 4.28: Address Bus Controller Symbol

61

For verification, an address bus test bench is designed that applies random

signals to address bus controller unit. Address bus controller inputs are tied to

“RegFile_HI_0”, “RegFile_LO_0”, “Alu_Result_1”, “Data_Bus_1” signals for

verification. Two select inputs of module are tied to “SelectHI” and “SelectLO”

signals. “Address_Bus” signal is tied to output of the address bus controller

module. When “SelectHI” signal is low, “RegFile_HI_0” signal; when “SelectHI”

signal is high, “Alu_Result_1” signal is selected for address bus high order byte.

Module selects “RegFile_LO_0” signal for low order byte of address bus when

“SelectLO” signal is low and “Data_Bus_1” signal when “SelectLO” signal is high.

Figure 4.29 and Figure 4.30 show test results which verify the module.

Figure 4.29: Address Bus Controller Test Results

62

Figure 4.30: Console Outputs of Address Bus Controller Test

63

4.7 Handshake I/O Module

Figure 4.31: Handshake I/O Module Symbol

Handshake I/O module includes port B, port C, strobe A, strobe B and handshake

I/O subsystem. Input and output ports of this module are presented in Figure 4.31.

Expanded mode operations of ports B and C are also implemented in this module.

Data on port C pins is latched into PORTCL register when a selected edge is

detected at strobe A (STRA) input and strobe B signal is negated at upcoming

PH2 clock positive edge if full-input handshake mode is selected. Strobe A flag

(STAF) and strobe B signals are synchronized with internal PH2 clock positive

edge as it is in original MC68HC11. All modes of handshake I/O subsystems are

implemented in this module. These modes are simple strobe handshake mode,

full-input handshake mode, normal and three-state variations of full-output

64

handshake mode. Verification of this module is done by using simulation platform

that is developed as a goal of this thesis.

Figure 4.32: Handshake I/O Module Block Diagram

4.8 Timer System

Timer system module of MC68HC11 MCU model includes main timer, pulse

accumulator and Port A. These three peripherals are all contained in one module

because of their interactions with each other. These peripherals share some

internal registers; main timer and pulse accumulator systems share port A pins.

Real-time interrupt, computer operating properly (COP), input capture and output

compare functions of main timer system are all implemented in the timer system

module of MC68HC11 SystemC model. This module contains largest number of

internal registers among the other modules. Input and output ports of timer system

module are presented in Figure 4.33.

65

Figure 4.33: Timer System Symbol

Main timer clock is generated using E-clock signal. Free running counter is

sensitive to this main timer clock. Also pulse accumulator clock, real time interrupt

function clock and COP function clock are generated using main timer clock.

Output compare functions compares free running counter with values loaded into

interested registers and sets corresponding port A pin is these two values become

equal to each other. Input capture functions save value of free running counter into

corresponding registers when selected edges are detected at corresponding pins

of port A.

There are eleven interrupt sources in this module. Ten of them are main timer

system related interrupt sources. There are five interrupt sources from output-

compare function, three interrupt sources from input-compare functions, one

interrupt source is free running timer overflow and one is real time interrupt

function. Pulse accumulator system requests interrupt when its internal counter

overflows.

66

Pulse accumulator system operates in two different modes. These modes are,

time accumulation and event-counting modes. Time accumulation function of this

module counts selected edges of pulse accumulator clock and sets overflow flag

and requests interrupt, if enabled, when internal pulse accumulator counter

overflows. Event counting function operates similar to time accumulation function

with a difference that it counts selected edges on PAI pin of port A. Port A

functions are also included in this module including sharing pin-7, forcing of

outputs in three state variation of full-output handshake mode. Verification of this

module is done in developed simulation platform. Block diagram of timer system is

presented in Figure 4.34. Timer system is tested and verified using examples from

M68HC11 Referece Manual.

Figure 4.34: Timer System Block Diagram

67

4.9 Serial Communications Module

Serial communications module contains asynchronous serial communications

interface (SCI), synchronous serial peripheral interface (SPI) and port D. These

three peripherals are brought together in this module because they share some

registers and pins with each other. Port D is a 6-bit bidirectional general purpose

I/O port. Four pins of port D are shared between general purpose I/O functions

and SPI system and other two pins are shared between general purpose I/O

functions and SCI system. Input and output ports of this module are given in

Figure 4.35.

Figure 4.35: Serial Communications Module Symbol

There exists a clock divider process in the module which divides ph2 clock and

generates baud rate and SPI clock signals. Receiver and transmitter processes for

SCI are also included in serial communications module. SCI receiver is

implemented compatible with 16x data sampling technique to reduce reception

errors. Master and slave mode operations of SPI system are implemented in two

68

separate processes because they are sensitive to different signals. Block diagram

of serial communications module is presented in Figure 4.36. Serial transmitter

and receiver are tested and verified using the serial port test program given in

Appendix B.

Figure 4.36: Serial Communications Module Block Diagram

69

4.10 Read Only Memory (ROM)

Figure 4.37: ROM Symbol

This module is designed as read only memory (ROM) of microcontroller unit

model. Size of ROM is 12 Kbytes. ROM is synchronous, it latches address

information using address strobe input (as_in) and outputs addressed data at

positive edge of E-clock if chip select input is at its active level. This module

contains a process to read ROM contents from a data file for debug and simulation

purposes. Symbol of ROM module is presented in Figure 4.37.

Verification of ROM module is done by first loading data into ROM memory using a

file and then reading all locations of ROM and comparing values read with original

values. Figure 4.38 shows console output of test process.

70

Figure 4.38: Console Output of ROM Test

Figure 4.38 shows values read from address locations of ROM and original values

that were loaded to ROM. Consistency between these values verifies ROM

module. Some part of resulting waveforms of test is presented in Figure 4.39.

Figure 4.39: Resulting Waveforms of ROM Test

71

4.11 Random Access Memory (RAM)

Figure 4.40: RAM Symbol

RAM module is an implementation of 512 bytes random access memory. This

module is synchronous to E-clock. Address information is latched using address

strobe input (as_in). Data from data I/O port is written into addressed register at

negative edge of E-clock if read / write (R/W) input (wr_in) is at its “write” level and

chip select input (cs_in) is at its active level. Addressed data is put onto data I/O

port if chip select input is at its active level and R/W input is at its “read” level. Data

I/O port is at high impedance if this module is not selected.

Verification of RAM module is done by writing random data on random address

locations and reading back the written data. Data read from RAM is compared to

data written to RAM at previous cycle. During the test, one million random write

and read operations are performed. According to test results, all data written to

RAM was read correctly.

A sample part of waveforms of signals during the verification process of RAM

module are presented in Figure 4.41. Figure 4.42 shows last part of the test

results. Data written to RAM and read from RAM during the last portion of test and

total count of read/write operations and total count of errors are also given in

Figure 4.42. Test results verify RAM module.

72

Figure 4.41: Waveforms of RAM Test Results

Figure 4.42: RAM Test Results

73

4.12 Electrically Erasable Programmable ROM (EEPROM)

EEPROM module is an implementation of 512 bytes of EEPROM. Reading from

an EEPROM location is same as reading from ROM or RAM, but writing to an

EEPROM location or erasing a location is different. In order to write data to an

address in EEPROM, EEPGM bit of PPROG register should be set first. This

enables EEPROM programming voltage. Write operation should be done following

this action and finally EEPROM programming voltage should be disabled again by

clearing EEPGM bit. Three different erase operations are available for EEPROM

locations. These are row erase, byte erase and bulk erase operations which erase

a row consisting of two bytes, a single byte and whole device respectively.

EEPROM module of MC68HC11 SystemC module uses a file for holding its

contents. Figure 4.43 presents port information of EEPROM module.

Figure 4.43: EEPROM Symbol

74

EEPROM module is verified by a two-step test. First step was filling EEPROM

locations with random values, than reading these values and comparing with

originally written values. Second step was clearing EEPROM locations and than

reading these locations and checking if they were cleared correctly. Test results

successfully verified EEPROM module. Figures 4.44 and 4.45 shows test results

of first and second step of test respectively.

Figure 4.44: EEPROM Write / Read Test Results.

75

Figure 4.45: EEPROM Clear / Read Test Results.

4.13 VLSI Implementation of SystemC Modules

VLSI Implementation of the developed SystemC modules is possible using

SystemC to HDL conversion tools. These conversion tools are commercial

applications and trial versions of these tools have limitations. Only ALU module of

the microcontroller SystemC module could be converted into VHDL using the

SystemCrafter tool due to the compiler limitations of the tool. VLSI implementation

of developed overall SystemC model is left as a future work. After VHDL synthesis

of SystemC descriptions using SystemCrafter, VHDL outputs of SystemCrafter is

synthesized for Spartan 3 XC3S50 FPGA using Xilinx ISE 9.2i tool. The results of

the synthesis process are given in Table 4.3.

76

Table 4.3: Synthesis Results of ALU Module

Device Utilization Summary

Logic Utilization Used Available Utilization

Number of Slice Flip Flops 71 1536 4 %

Number of 4 input LUTs 907 1536 59 %

Logic Distribution

Number of occupied Slices 496 768 64 %

Number of Slices containing only related logic 496 496 100 %

Number of Slices containing unrelated logic 0 496 0 %

Total Number of 4 input LUTs 909 1536 59 %

Number used as logic 907

Number used as route-thru 2

Number of bonded IOBs 40 97 41 %

IOB Flip Flops 28

Number of GCLKs 1 8 12 %

Total equivalent gate count for design 6747

Additional JTAG gate count for IOBs 1920

77

CHAPTER 5

VISUAL SIMULATION PLATFORM

In this thesis study, a visual simulation platform is developed using co-design

capabilities and object oriented nature of SystemC. Visual simulation platform

consists of SystemC model of MC68HC11 microcontroller unit, its peripheral

devices, test bench modules and user friendly visual simulation software that is

designed for controlling simulations by configuring test bench, starting simulations

and observing simulation results. Structures of the developed visual simulation

platform, test bench modules and finally visual simulation software are explained

in this chapter.

5.1 Structure of Visual Simulation Platform

Visual simulation platform consists of three main parts. These are MC68HC11

SystemC model with its peripherals, test bench and visual simulation software

which are presented in Figure 5.1. Test bench contains SystemC models of test

hardware. Visual simulation software outputs test bench configuration files that are

used to configure which test module is connected to which port and whether it is

enabled or not and to configure operations of test hardware models in test bench.

Visual simulation software also outputs microcontroller program file that is stored

into ROM of microcontroller unit. Test bench is connected to MC68HC11 via input

and output ports and applies signals to and reads signals from MC68HC11

according to its configuration. After simulation ends, test bench module outputs a

simulation results file that contains information on ports of microcontroller unit and

78

internals of test modules for each cycle of simulation process. MC68HC11 model

outputs simulation result files that contain information on internal working of

microcontroller unit such as state of microcontroller, address and data bus signals,

register values and RAM content at each cycle.

Figure 5.1: Visual Simulation Platform

5.2 Test Bench

Test bench consists of SystemC models of test hardware that are available in

most electronic experiment kits. These hardware modules are designed at a much

higher abstraction level than microcontroller unit. This is a powerful ability of

SystemC, because designing test hardware in a higher abstraction level than

tested system saves great time of system designers. Test bench is configurable by

79

a configuration file. According to the configuration file, some hardware modules

are enabled or disabled and they are connected to different I/O ports. Test

hardware contained in test bench are an 8-bit binary switch, a push button pulse

generator, some TTL oscillators, seven segment BCD decoder / driver, seven

segment common anode / common cathode displays, logic indicator and serial

monitor.

8-bit binary switch is an output module that takes a configuration file and outputs

specified binary data value at specified times by configuration file. Push button

pulse generator outputs a pulse at specified time using push button state and

timing information on a configuration file. It generates both negative edge and a

positive edge pulse at the same time. TTL Oscillators module contains four

oscillators. It has an output for each oscillator. These TTL oscillators have

oscillation frequencies of 100 KHz, 10 KHz, 1 KHz and 100 Hz. Seven segment

BCD decoder / driver module is an input module that decodes BCD value on its

inputs and converts it to a form applicable to a seven segment display. Seven

segment display module reads its inputs and outputs states of seven segment

displays which can be configured as common anode or common cathode displays.

Logic indicator module is a simple module that just saves binary data on its inputs

and time information of value changes on this data. Serial monitor has serial

transmitter and receiver and it outputs serial data that is read from a file and

shows the data that is received serially.

5.3 Features of Visual Simulation Software

Visual simulation software is the end-user face of the simulation platform. The user

interface is designed in a way that it guides user from first to last step of a

simulation process. First step of simulation process is to write assembly codes for

microcontroller unit in code editor window. Then, the written code is compiled to

Motorola s-record (.s19) file and this s-record file is converted to machine code

(.hex file) that will be placed in ROM. After machine code file is generated, this file

80

is downloaded to microcontroller ROM. At this point program waits for user to

finish configuration of test bench. After test bench configuration is finished, user

can select simulation duration and start a simulation. When the simulation ends,

simulation results are presented on main screen of program. User can examine

simulation results that consist of test hardware information and information on

microcontroller internal workings. Details on program and using graphical user

interface are explained in following subsections.

5.3.1 Main Window of Simulation Software

Main window of visual simulation software is presented in Figure 5.2. Regions in

main window are labeled with capital letters in the figure. Region which is labeled

with ‘A’ is program file region. User can write assembly code and convert written

code to machine code using “Code Editor” and “Machine Code Generator” buttons

respectively. ‘B’ region contains condition codes register information. Condition

code register information is update at every clock cycle. Region labeled with ‘C’

shows contents of registers in register file before and after the selected cycle or

instruction. Region ‘D’ is test environment region. In this region user can download

machine code into microcontrollers ROM, configure test bench and test hardware,

select simulation duration, run simulation and view simulation results using

buttons. After a simulation ends, executed instructions are presented as a list in

region ‘E’. Region ‘F’ shows information on internal cycles of instruction execution.

This region is filled when user selects an executed instruction. Region ‘G’ shows

values of special function registers for select clock cycle.

81

Figure 5.2: Main Window of Visual Simulation Software

Main window of simulation software is arranged in a way that it guides user

through simulation process. Buttons are located in an order and numbered for

simulation steps and they are not enabled until next step of simulation process is

using that button.

82

5.3.2 Code Editor

Visual simulation tool has a built-in code editor that works like a simple text editor

program. User can write or modify 68HC11 assembly programs using this editor

and save them in “.asm” format. A screenshot from code editor window is shown in

Figure 5.3.

Figure 5.3: 68HC11 Assembly Code Editor Window

83

5.3.3 Machine Code Generator

User can compile programs to generate MC68HC11 machine codes. For machine

code generation, visual simulation program uses Motorola’s assembler program

“68HC11AS11.exe” and “hex to bin converter v.2.00” from “Tech Edge Pty. Ltd.”

which are available for free download on the internet. These conversion steps are

done manually by user for better understanding of machine code generation steps

starting from an assembly code file (“.asm” file). Figure 5.4 shows a screenshot

from machine code generator window.

Figure 5.4: Machine Code Generator Window

84

At first step, user selects the “.asm” file which was written in code editor or in any

other editor. Then user converts this file to Motorola s-record file (“.s19” file) format

using a button labeled “.asm => .s19”. At this moment, simulator runs Motorola’s

68HC11AS11ASM compiler at background. After completing “.asm” to “.s19”

conversion, conversion from “.s19” to machine code file (“.hex” file) format is done

using “.s19 => .asm” button. Simulator runs “hex to bin converter v.2.00” from

“Tech Edge Pty. Ltd.” for this process. This step gives machine code file that can

be downloaded to microcontroller’s ROM for simulation purposes. In the code

generator window, “Hint” space gives guides user for steps of machine code

generation and “Info” space gives simple information on the file formats that are

generated on each step.

5.3.4 Preparing Simulation Environment and Running Simulation

In the main window of visual simulation software, test environment region is used

for downloading machine code file into microcontroller’s ROM, test bench

configuration and running simulation. Figure 5.5 shows a screenshot from this

region. Everything needed by user for preparing and running a simulation using a

machine code file is available in this region.

85

Figure 5.5: Test Environment Region of Simulation Program

When machine code file is ready, it can be downloaded to microcontroller ROM

using “Select .HEX File” and “Download .HEX to ROM” buttons that are shown in

Figure 5.5. When a machine code file is selected, file name is updated on main

screen and ROM button is enabled when the selected machine code file is put into

microcontroller’s ROM. Viewing ROM locations is explained in following

subsections.

86

After user program is put into ROM, test bench configuration should be done by

user. User should configure hardware modules of test bench modules that are

needed in simulation.

Configuration of 8-bit binary switch operation can be done by using its button on

test bench which can be seen in Figure 5.5. When user clicks on this button, a

new window opens as shown in Figure 5.6. After “Start Configuration” button is

pressed, user can generate a sequence of binary data that will be applied at

different times. Switch conditions are selected, timing of the switch configuration is

selected and it is added by using “Add” button. When configuration ends, it should

be saved to take effect. Any row can be removed using “Remove” button.

Figure 5.6: 8-bit Binary Switch Configuration

87

Configurations of push button pulse generator and TTL oscillators are very similar

to configuration of 8-bit binary switch. Only difference is push button has only one

bit released or pressed states and TTL oscillators have one bit power on and

power off states instead of 8-bit information. Window used for push button pulse

generator configuration is shown in Figure 5.7.

Figure 5.7: Push Button Pulse Generator Configuration

88

Configuration of serial monitor can be done by using “Serial Monitor” button.

Figure 5.8 shows a screenshot from serial monitor configuration window. User can

add any text that will be sent at any desired time.

Figure 5.8: Serial Monitor Configuration

Test bench port connections can be configured using “Test Bench Configuration”

button in test environment. This button opens a new window for directing test

hardware input / output pins to desired port pins of microcontroller. User can also

enable or disable test hardware modules. Figure 5.9 shows test bench port

configuration window. User should first press “Start Configuration” button, make

necessary changes and save configuration before ending simulation for

configuration to take effect.

89

Figure 5.9: Test Bench Configuration Window

When configuration of test bench is finished, user should check “Test Bench

Config. Complete” box, select simulation duration and press “Run” button.

Program waits confirmation before running simulation. Figure 5.10 shows these

steps. Visual simulation program runs executable file of MC68HC11 SystemC

model. This is a flexibility of using SystemC for co-design. SystemC simulations

can be performed by only executing a program file.

90

Figure 5.10: Running Simulation

5.3.5 Viewing Simulation Results

When the simulation ends, program automatically fills execution sequence table.

This table gives information on instructions in a sequence. Execution time of

instruction, opcode, operands, addressing mode and opcode page of instruction

can be seen on this table. Op1, Op2 and Op3 columns present operands. If

number of operands is smaller than three a dash (“-”) is put into empty cells. A

screenshot of execution sequence table is given in Figure 5.11. When an

instruction is selected, internal cycles execution information of that instruction is

given in instruction cycles table as shown in Figure 5.11. This information consists

of time, microcontroller state, address bus, data bus and read/write signal.

Because, this visual simulator actually runs a SystemC simulation, it can access

available information on internal workings of microcontroller unit. This is a very

important feature of this simulator which makes it different from standard

simulators that are available in the market or in the internet for free download. This

feature allows better understanding of internal workings of microcontroller. Values

of special function registers are presented for selected cycle when an instruction

or instruction cycle information is selected. Values of internal register values and

condition code register information are presented as in Figure 5.12.

91

Figure 5.11: Instruction and Special Function Registers Information

92

Figure 5.12: Internal Registers Information

User can view RAM, ROM and EEPROM contents for each cycle or instruction

selected. ROM information is cycle independent because it is read-only and does

not change in run time. Figures 5.13, 5.14 and 5.15 present screenshots of RAM,

ROM and EEPROM content windows respectively.

Figure 5.13: RAM Content Window

93

Figure 5.14: ROM Content Window

Figure 5.15: EEPROM Content Window

94

CHAPTER 6

CONCLUSIONS

Today’s complex systems contain both hardware and software parts. Hardware

may contain multiple processors, application specific integrated circuits and

subsystems. Competition in market pushes companies to produce area and cost

effective systems in a short time-to-market period. As a consequence, designers

tend to bring all hardware and software of their system together on a single chip

with the help of developments in VLSI techniques. Such a system is called system

on a chip (SoC). IP cores are descriptions of hardware modules that are ready to

be used in SoC designs. In order to use previous know-how on a specific

microprocessor, a designer use IP core of that microprocessor in a system design.

Compound design of hardware and software parts of a system allows these parts

to be brought together in earlier stages of design flow and allows design of whole

system to be verified before hardware prototypes are manufactured. SystemC, as

a system design language, is a good co-design and co-verification platform for

system-on-a-chip designs. As SystemC allows different abstraction level designs

for different modules of a system, designers can use high abstraction levels for

test bench devices while they are using low abstraction levels for system hardware

modules. This approach reduces effort spent on test bench design and shortens

testing periods. If properly written, SystemC codes are synthesizable to hardware

description languages with the help of automatic conversion tools and no manual

conversion from SystemC to HDLs is needed.

Goal of this thesis has been to develop SystemC implementation of MC68HC11

microcontroller and to provide a user friendly simulation platform with test bench

95

hardware models. For this purpose, original microcontroller architecture and

operation with its peripherals is studied, hardware architecture of microcontroller is

implemented in SystemC with the ability of giving information on its internal

workings for simulation purposes. Microcontroller core modules are initially

designed and tested separately and these modules are brought together with

microcontroller software to form initial microcontroller system. Refinements on

initially designed core and design of peripheral devices are done using co-design

capabilities of SystemC. Microcontroller hardware and software are co-verified

using SystemC. System modules are RAM, ROM, ALU, register file and CPU

controller unit that constitute CPU of MC68HC11. Serial communications unit,

main timer unit and handshake I/O unit modules are peripheral devices of the

microcontroller. Microcontroller implementation with its peripheral devices is

almost identical to original MC68HC11E9. SystemC implementation of the

microcontroller does not contain analog to digital converter peripheral because

data structures for analog hardware modeling are not included in standard

SystemC library.

For making simulations on microcontroller implementation, a reconfigurable test

bench is designed in SystemC using high abstraction levels. Test bench contains

test hardware modules such as TTL oscillator, binary switch, seven segment

decoder/driver and serial monitor. Any device in test bench can be disabled or

enabled and connected to any port of microcontroller. User can configure test

bench modules for generating desired signals with desired timings.

For a user friendly interface, a visual application is developed in Microsoft .NET

platform in order to allow user to write microcontroller programs, reconfigure test

bench, perform simulations of microcontroller system and view simulation results.

This visual application is a layer between SystemC implementations and user.

When user runs a simulation in visual application, SystemC simulations of system

are performed and simulation results are dumped to files. The visual simulation

application communicates with SystemC implementation of microcontroller and

test bench using input and output files. It passes configuration parameters given

96

by user to implemented modules and reads simulation results and presents to user

in a clearly understandable format.

Using a visual simulation platform for co-simulation of microcontroller programs

and SystemC implementation of suggested microcontroller hardware made

verification process easy to perform and simulation results clearly understandable.

Different simulations are performed on designed microcontroller and these

simulation results verified that the designed microcontroller comply with original

microcontroller.

The designed simulation platform architecture is expandable and is easily

applicable to different systems. It can be used by design teams for performing

simulations on their system designs and visualizing simulation results. Using or

developing IP cores that give internal information for simulation purposes and

developing a visual simulation platform may reduce effort on test and verification

and help test personnel to easily discover errors in system.

The developed simulator actually runs cycle accurate hardware and software

simulations of microcontroller unit and test bench. So it is not working as fast as

non-timed microcontroller simulators that are widely available. Simulation duration

is a linear function that is directly proportional with microcontroller simulation time

and inversely proportional with microcontroller clock frequency. On a modern

computer with 1.5 GHz CPU, simulation speed is about 7000 external clock cycles

/ second. This means about 150 times slower simulations compared to real time. If

average execution time of MC68HC11 instructions is assumed to be 5 bus cycles,

about 350 instructions can be simulated per second. Simulation run time is a

disadvantage of suggested simulation platform but it has an advantage of

presenting internal workings of microcontroller for every micro cycle and allows

better understanding of microcontroller operation. It is impractical to use simulation

platform for long lasting simulations if only concern in doing simulation is observing

microcontroller program performance. This simulation platform is useful if the user

97

is concerned with cycle accurate information on internal workings of

microcontroller hardware when it is running a given program.

For the future works, SystemC implementations can be converted into HDL by

using commercially available tools for observing area and speed efficiency and a

visual simulation platform that supports both SystemC and HDL simulations can

be suggested. Simulations on HDL model or layout should be carried and signal

values on specific points and I/O ports of microcontroller should be compared with

simulation platform results before hardware implementation is done. Designed

microcontroller core can be employed in a larger system and simulator can be

improved for that system.

98

REFERENCES

[1] Khan A., “Recent Developments in High-Performance System on Chip”,
IEEE International Conference on Integrated Circuit Design and
Technology, 2004

[2] Schulz S., Rozenblit J. W., Mrva M., Buchenrieder K., “Model-Based
Codesign”, IEEE Computer Society Press, August 1998

[3] Benmohammed M., Merniz S., “Multi-language Co-design Environment
for Controller System Design”, Journal of Computer Science 1 pp. 337-
340, Science Publications, 2005

[4] IEEE Computer Society, “IEEE Standard SystemC Language Reference
Manual”, IEEE, New York, USA, 31 March 2006

[5] Grötker T., Liao S., Martin G., Swan S., “System Design with SystemC”,
Kluwer Academic Publishers, 2002

[6] Synthesis Working Group of OSCI, “SystemC Synthesizable Subset”, 23
December 2004

[7] Celoxica, “Agility Compiler”, www.celoxica.com, Last accessed:
December 2007

[8] SystemCrafter Ltd., “SystemCrafter”, www.systemcrafter.com, Last
accessed: December 2007

[9] Calazans N., Moreno E., Hessel F., Rosa V., Moraes F., Carara E.,
“From VHDL Register Transfer Level to SystemC Transaction Level
Modeling: a Comparative Case Study”, Proceedings of the 16th
Symposium on Integrated Circuits and Systems Design, IEEE, 2003

[10] Zabawa C. M., Wunnava V. S., “Efficient Digital System Design
Methodology with SystemC Register Transfer Level Modeling”, IEEE
SoutheastCon Proceedings, 2004

[11] Synopsis Inc., www.synopsis.com, Last accessed: December 2007

99

[12] CoWare Inc. www.coware.com, Last accessed: December 2007

[13] Organization of OpenCores, “OpenCores.org”, www.opencores.com, Last
accessed: December 2007

[14] Jonsson B., “A JPEG Encoder in SystemC”, A thesis submitted to Lulea
University of Technology, Tokyo, 2005

[15] Kesen L., “Implementation of an 8-bit Microcontroller with SystemC”, A
thesis submitted to The Graduate School of Natural and Applied
Sciences of Middle east Technical University in The Department of
Electrical and Electronics Engineering, Ankara, Turkiye, November 2004

[16] Zengin S., “SystemC Implementation of a RISC-Based Microcontroller
Architecture”, A thesis submitted to The Graduate School of Natural and
Applied Sciences of Middle east Technical University in The Department
of Electrical and Electronics Engineering, Ankara, Turkiye, December
2006

[17] Sözen S., “A Viterbi Decoder Using SystemC for Area Efficient VLSI
Implementation”, A thesis submitted to The Graduate School of Natural
and Applied Sciences of Middle east Technical University in The
Department of Electrical and Electronics Engineering, Ankara, Turkiye,
September 2006

[18] Kazancıoğlu U., “The Implementation of a Direct Digital Synthesis Based
Function Generator Using SystemC and VHDL”, A thesis submitted to
The Graduate School of Natural and Applied Sciences of Middle east
Technical University in The Department of Electrical and Electronics
Engineering, Ankara, Turkiye, February 2007

[19] Mert Y. M., “SystemC Implementation with Analog and Mixed Signal
Modeling for a Microcontroller”, A thesis submitted to The Graduate
School of Natural and Applied Sciences of Middle east Technical
University in The Department of Electrical and Electronics Engineering,
Ankara, Turkiye, May 2007

[20] Freescale Semiconductor, Inc., “M68HC11 Microcontrollers Reference
Manual”, M68HC11RM/D Rev.6, April 2002.

[21] Freescale Semiconductor, Inc., “M68HC11E Family Data Sheet”,
M68HC11E Rev.5.1, July 2005

100

APPENDIX A

M68HC11 INSTRUCTION SET

Table A.1: Information on Operands

Operands

dd 8-bit direct address. High byte = $00. Low byte = ($00 - $FF)

ff 8-bit positive offset which will be added to index register. ($00 - $FF)

hh High-order byte of 16-bit extended address

ll Low-order byte of 16-bit extended address

ii 8-bit immediate data

jj High-order byte of 16-bit immediate data

kk Low-order byte of 16-bit immediate data

mm 8-bit mask data

rr Signed relative offset which will be added to program counter. ($80 - $7F)

101

Table A.2: Information on Condition Codes

Condition Codes

- Not affected

0 Cleared

1 Set

∆ Set or cleared depending on operation

↓ Can be cleared but not set

102

Table A.3: M68HC11 Instruction Set (1 / 7)

103

Table A.3: M68HC11 Instruction Set (2 / 7)

104

Table A.3: M68HC11 Instruction Set (3 / 7)

105

Table A.3: M68HC11 Instruction Set (4 / 7)

106

Table A.3: M68HC11 Instruction Set (5 / 7)

107

Table A.3: M68HC11 Instruction Set (6 / 7)

108

Table A.3: M68HC11 Instruction Set (7 / 7)

109

APPENDIX B

MICROCONTROLLER TEST CODE

B.1 Instructions and Addressing Modes Test Program

ORG $D000
 LDAA #$20 ; ***ARITHMETIC OPERATIONS***
 LDAB #$30
 STAB $0001
 ADDA $0001 ;DIRECT ADDITION
 LDAB #$50
 STAB $0002
 SUBA $0002 ;DIRECT SUBTRACTION
 BEQ OK01
 LDAA #$01
 JMP FAILED
OK01:
 LDAA #$50
 ADDA #$40 ;IMMEDIATE ADDITION
 SUBA #$90 ;IMMEDIATE SUBTRACTION
 BEQ OK02
 LDAA #$02
 JMP FAILED
OK02:
 LDAA #$90
 LDAB #$10
 STAB $0100
 ADDA $0100 ;EXTENDED ADDITION
 LDAB #$A0
 STAB $0101
 SUBA $0101 ;EXTENDED SUBTRACTION
 BEQ OK03
 LDAA #$03
 JMP FAILED
OK03:
 LDAA #$A0
 LDAB #$05
 STAB $0102

110

 LDX #$0100
 ADDA $02,X ;INDEXED ADDITION
 LDAB #$A5
 STAB $0103
 SUBA $03,X ;INDEXED SUBTRACTION
 BEQ OK04
 LDAA #$04
 JMP FAILED
OK04:
 LDAA #$A5
 INCA ;INHERENT INCREMENT
 CMPA #$A6
 BEQ OK05
 LDAA #$05
 JMP FAILED
OK05:
 DECA ;INHERENT DECREMENT
 CMPA #$A5
 BEQ OK06
 LDAA #$06
 JMP FAILED
OK06:
 INC $0101 ;EXTENDED INCREMENT
 LDAB #$A1
 CMPB $0101
 BEQ OK07
 LDAA #$07
 JMP FAILED
OK07:
 DEC $0101 ;EXTENDED DECREMENT
 LDAB #$A0
 CMPB $0101
 BEQ OK08
 LDAA #$08
 JMP FAILED
OK08:
 INC $02,X ;INDEXED INCREMENT
 LDAB #$06
 CMPB $0102
 BEQ OK09
 LDAA #$09
 JMP FAILED
OK09:
 DEC $02,X ;INDEXED DECREMENT
 LDAB #$05
 CMPB $0102
 BEQ OK0A
 LDAA #$0A
 JMP FAILED
OK0A:
 LDAA #$23 ;***MULTIPLICATION & DIVISION***

111

 LDAB #$17
 MUL ;MULTIPLICATION
 SUBD #$0325
 BEQ OK0B
 LDAA #$0B
 JMP FAILED
OK0B:
 LDD #$0325
 LDX #$0013
 IDIV ;DIVISION
 SUBD #$0007 ;CHECK REMAINDER
 BEQ OK0C
 LDAA #$0C
 JMP FAILED
OK0C:
 XGDX
 SUBD #$002A ;CHECK QUOTIENT
 BEQ OK0D
 LDAA #$0D
 JMP FAILED
OK0D:
 LDAA #$25 ;***LOGICAL OPERATIONS***
 ANDA #$F0 ;IMMEDIATE AND
 LDAB #$20
 SBA
 BEQ OK0E
 LDAA #$0E
 JMP FAILED
OK0E:
 ORAA #$97 ;IMMEDIATE OR
 LDAB #$0F
 STAB $0004
 ANDA $0004 ;DIRECT AND
 CMPA #$07
 BEQ OK0F
 LDAA #$0F
 JMP FAILED
OK0F:
 LDAB #$A0
 STAB $0005
 ORAA $0005 ;DIRECT OR
 ASLA ;INHERENT ARITHMETIC SHIFT LEFT
 CMPA #$4E
 BEQ OK10
 LDAA #$10
 JMP FAILED
OK10:
 SEC
 RORA ;INHERENT ROTATE RIGHT
 CMPA #$A7
 BEQ OK11

112

 LDAA #$11
 JMP FAILED

OK11:
 SEC
 LDAA #$25
 STAA $0105
 ROL $0105 ;EXTENDED ROTATE LEFT
 LDAB #$4B
 CMPB $0105
 BEQ OK12
 LDAA #$12
 JMP FAILED
OK12:
 LDX #$0100
 NEG $05,X ;INDEXED NEGATE
 LDAA #$B5
 CMPA $05,X
 BEQ OK13
 LDAA #$13
 JMP FAILED
OK13:
 ASR $0105 ;EXTENDED ARITHMETIC SHIFT RIGHT
 LDAA $05,X
 CMPA #$DA
 BEQ OK14
 LDAA #$14
 JMP FAILED
OK14:
 LSR $05,X ;INDEXED LOGICAL SHIFT RIGHT
 LDAA #$6D
 CMPA $0105
 BEQ OK15
 LDAA #$15
 JMP FAILED
OK15:
 COMA ;INHERENT COMPLEMENT
 CMPA #$92
 BEQ OK16
 LDAA #$16
 JMP FAILED
OK16:
 COM $0105 ;EXTENDED COMPLEMENT
 LDAB #$92
 CMPB $05,X
 BEQ OK17
 LDAA #$17
 JMP FAILED
OK17:
 EORA #$F0 ;IMMEDIATE EXCLUSIVE OR
 CMPA #$62

113

 BEQ OK18
 LDAA #$18
 JMP FAILED
OK18:
 CLR $05,X ;INDEXED CLEAR
 CLRA ;INHERENT CLEAR
 CMPA $0105
 BEQ OK19
 LDAA #$19
 JMP FAILED
OK19:
 BSET $05,X #$AA ;INDEXED SET BITS
 LDAA #$AA
 CMPA $0105
 BEQ OK1A
 LDAA #$1A
 JMP FAILED
OK1A:
 BCLR $05,X #$0F ;INDEXED CLEAR BITS
 LDAA #$A0
 CMPA $05,X
 BEQ OK1B
 LDAA #$1B
 JMP FAILED
OK1B:
 LDAA #$45
 LDAB #$CD
 PSHA ;PUSH
 PSHB
 CLRA
 CLRB
 PULB ;PULL
 PULA
 CMPA #$45
 BEQ OK1C
 LDAA #$1C
 JMP FAILED
OK1C:
 CMPB #$CD
 BEQ OK1D
 LDAA #$1D
 JMP FAILED
OK1D:
 LDAB #$15
 STAB $0010
 BRCLR $0010 #$EA OK1E ;BRANCH IF BITS CLEAR
 LDAA #$1E
 JMP FAILED
OK1E:
 BRSET $0010 #$05 OK1F ;BRANCH IF BITS SET
 LDAA #$1F

114

 JMP FAILED
OK1F:
 LDAA #$00
 LDAB #$00
 STOP
FAILED:
 LDAB #$EE
 STOP

115

B.2 Execution of Test Program on Original MC68HC11

LDAA #$20 P-8002 Y-FFFF X-FFFF A-20 B-FF C-90 S-0041

LDAB #$30 P-8004 Y-FFFF X-FFFF A-20 B-30 C-90 S-0041

STAB $01 P-8006 Y-FFFF X-FFFF A-20 B-30 C-90 S-0041

ADDA $01 P-8008 Y-FFFF X-FFFF A-50 B-30 C-90 S-0041

LDAB #$50 P-800A Y-FFFF X-FFFF A-50 B-50 C-90 S-0041

STAB $02 P-800C Y-FFFF X-FFFF A-50 B-50 C-90 S-0041

SUBA $02 P-800E Y-FFFF X-FFFF A-00 B-50 C-94 S-0041

BEQ $8015 P-8015 Y-FFFF X-FFFF A-00 B-50 C-94 S-0041

LDAA #$50 P-8017 Y-FFFF X-FFFF A-50 B-50 C-90 S-0041

ADDA #$40 P-8019 Y-FFFF X-FFFF A-90 B-50 C-9A S-0041

SUBA #$90 P-801B Y-FFFF X-FFFF A-00 B-50 C-94 S-0041

BEQ $8022 P-8022 Y-FFFF X-FFFF A-00 B-50 C-94 S-0041

LDAA #$90 P-8024 Y-FFFF X-FFFF A-90 B-50 C-98 S-0041

LDAB #$10 P-8026 Y-FFFF X-FFFF A-90 B-10 C-90 S-0041

STAB $0100 P-8029 Y-FFFF X-FFFF A-90 B-10 C-90 S-0041

ADDA $0100 P-802C Y-FFFF X-FFFF A-A0 B-10 C-98 S-0041

LDAB #$A0 P-802E Y-FFFF X-FFFF A-A0 B-A0 C-98 S-0041

STAB $0101 P-8031 Y-FFFF X-FFFF A-A0 B-A0 C-98 S-0041

SUBA $0101 P-8034 Y-FFFF X-FFFF A-00 B-A0 C-94 S-0041

BEQ $803B P-803B Y-FFFF X-FFFF A-00 B-A0 C-94 S-0041

LDAA #$A0 P-803D Y-FFFF X-FFFF A-A0 B-A0 C-98 S-0041

LDAB #$05 P-803F Y-FFFF X-FFFF A-A0 B-05 C-90 S-0041

STAB $0102 P-8042 Y-FFFF X-FFFF A-A0 B-05 C-90 S-0041

LDX #$0100 P-8045 Y-FFFF X-0100 A-A0 B-05 C-90 S-0041

ADDA $02,X P-8047 Y-FFFF X-0100 A-A5 B-05 C-98 S-0041

LDAB #$A5 P-8049 Y-FFFF X-0100 A-A5 B-A5 C-98 S-0041

STAB $0103 P-804C Y-FFFF X-0100 A-A5 B-A5 C-98 S-0041

SUBA $03,X P-804E Y-FFFF X-0100 A-00 B-A5 C-94 S-0041

BEQ $8055 P-8055 Y-FFFF X-0100 A-00 B-A5 C-94 S-0041

LDAA #$A5 P-8057 Y-FFFF X-0100 A-A5 B-A5 C-98 S-0041

INCA P-8058 Y-FFFF X-0100 A-A6 B-A5 C-98 S-0041

CMPA #$A6 P-805A Y-FFFF X-0100 A-A6 B-A5 C-94 S-0041

BEQ $8061 P-8061 Y-FFFF X-0100 A-A6 B-A5 C-94 S-0041

DECA P-8062 Y-FFFF X-0100 A-A5 B-A5 C-98 S-0041

CMPA #$A5 P-8064 Y-FFFF X-0100 A-A5 B-A5 C-94 S-0041

BEQ $806B P-806B Y-FFFF X-0100 A-A5 B-A5 C-94 S-0041

INC $0101 P-806E Y-FFFF X-0100 A-A5 B-A5 C-98 S-0041

LDAB #$A1 P-8070 Y-FFFF X-0100 A-A5 B-A1 C-98 S-0041

CMPB $0101 P-8073 Y-FFFF X-0100 A-A5 B-A1 C-94 S-0041

BEQ $807A P-807A Y-FFFF X-0100 A-A5 B-A1 C-94 S-0041

DEC $0101 P-807D Y-FFFF X-0100 A-A5 B-A1 C-98 S-0041

LDAB #$A0 P-807F Y-FFFF X-0100 A-A5 B-A0 C-98 S-0041

CMPB $0101 P-8082 Y-FFFF X-0100 A-A5 B-A0 C-94 S-0041

BEQ $8089 P-8089 Y-FFFF X-0100 A-A5 B-A0 C-94 S-0041

INC $02,X P-808B Y-FFFF X-0100 A-A5 B-A0 C-90 S-0041

LDAB #$06 P-808D Y-FFFF X-0100 A-A5 B-06 C-90 S-0041

CMPB $0102 P-8090 Y-FFFF X-0100 A-A5 B-06 C-94 S-0041

BEQ $8097 P-8097 Y-FFFF X-0100 A-A5 B-06 C-94 S-0041

116

DEC $02,X P-8099 Y-FFFF X-0100 A-A5 B-06 C-90 S-0041

LDAB #$05 P-809B Y-FFFF X-0100 A-A5 B-05 C-90 S-0041

CMPB $0102 P-809E Y-FFFF X-0100 A-A5 B-05 C-94 S-0041

BEQ $80A5 P-80A5 Y-FFFF X-0100 A-A5 B-05 C-94 S-0041

LDAA #$23 P-80A7 Y-FFFF X-0100 A-23 B-05 C-90 S-0041

LDAB #$17 P-80A9 Y-FFFF X-0100 A-23 B-17 C-90 S-0041

MUL P-80AA Y-FFFF X-0100 A-03 B-25 C-90 S-0041

SUBD #$0325 P-80AD Y-FFFF X-0100 A-00 B-00 C-94 S-0041

BEQ $80B4 P-80B4 Y-FFFF X-0100 A-00 B-00 C-94 S-0041

LDD #$0325 P-80B7 Y-FFFF X-0100 A-03 B-25 C-90 S-0041

LDX #$0013 P-80BA Y-FFFF X-0013 A-03 B-25 C-90 S-0041

IDIV P-80BB Y-FFFF X-002A A-00 B-07 C-90 S-0041

SUBD #$0007 P-80BE Y-FFFF X-002A A-00 B-00 C-94 S-0041

BEQ $80C5 P-80C5 Y-FFFF X-002A A-00 B-00 C-94 S-0041

XGDX P-80C6 Y-FFFF X-0000 A-00 B-2A C-94 S-0041

SUBD #$002A P-80C9 Y-FFFF X-0000 A-00 B-00 C-94 S-0041

BEQ $80D0 P-80D0 Y-FFFF X-0000 A-00 B-00 C-94 S-0041

LDAA #$25 P-80D2 Y-FFFF X-0000 A-25 B-00 C-90 S-0041

ANDA #$F0 P-80D4 Y-FFFF X-0000 A-20 B-00 C-90 S-0041

LDAB #$20 P-80D6 Y-FFFF X-0000 A-20 B-20 C-90 S-0041

SBA P-80D7 Y-FFFF X-0000 A-00 B-20 C-94 S-0041

BEQ $80DE P-80DE Y-FFFF X-0000 A-00 B-20 C-94 S-0041

ORAA #$97 P-80E0 Y-FFFF X-0000 A-97 B-20 C-98 S-0041

LDAB #$0F P-80E2 Y-FFFF X-0000 A-97 B-0F C-90 S-0041

STAB $04 P-80E4 Y-FFFF X-0000 A-97 B-0F C-90 S-0041

ANDA $04 P-80E6 Y-FFFF X-0000 A-07 B-0F C-90 S-0041

CMPA #$07 P-80E8 Y-FFFF X-0000 A-07 B-0F C-94 S-0041

BEQ $80EF P-80EF Y-FFFF X-0000 A-07 B-0F C-94 S-0041

LDAB #$A0 P-80F1 Y-FFFF X-0000 A-07 B-A0 C-98 S-0041

STAB $05 P-80F3 Y-FFFF X-0000 A-07 B-A0 C-98 S-0041

ORAA $05 P-80F5 Y-FFFF X-0000 A-A7 B-A0 C-98 S-0041

ASLA P-80F6 Y-FFFF X-0000 A-4E B-A0 C-93 S-0041

CMPA #$4E P-80F8 Y-FFFF X-0000 A-4E B-A0 C-94 S-0041

BEQ $80FF P-80FF Y-FFFF X-0000 A-4E B-A0 C-94 S-0041

SEC P-8100 Y-FFFF X-0000 A-4E B-A0 C-95 S-0041

RORA P-8101 Y-FFFF X-0000 A-A7 B-A0 C-9A S-0041

CMPA #$A7 P-8103 Y-FFFF X-0000 A-A7 B-A0 C-94 S-0041

BEQ $810A P-810A Y-FFFF X-0000 A-A7 B-A0 C-94 S-0041

SEC P-810B Y-FFFF X-0000 A-A7 B-A0 C-95 S-0041

LDAA #$25 P-810D Y-FFFF X-0000 A-25 B-A0 C-91 S-0041

STAA $0105 P-8110 Y-FFFF X-0000 A-25 B-A0 C-91 S-0041

ROL $0105 P-8113 Y-FFFF X-0000 A-25 B-A0 C-90 S-0041

LDAB #$4B P-8115 Y-FFFF X-0000 A-25 B-4B C-90 S-0041

CMPB $0105 P-8118 Y-FFFF X-0000 A-25 B-4B C-94 S-0041

BEQ $811F P-811F Y-FFFF X-0000 A-25 B-4B C-94 S-0041

LDX #$0100 P-8122 Y-FFFF X-0100 A-25 B-4B C-90 S-0041

NEG $05,X P-8124 Y-FFFF X-0100 A-25 B-4B C-99 S-0041

LDAA #$B5 P-8126 Y-FFFF X-0100 A-B5 B-4B C-99 S-0041

CMPA $05,X P-8128 Y-FFFF X-0100 A-B5 B-4B C-94 S-0041

BEQ $812F P-812F Y-FFFF X-0100 A-B5 B-4B C-94 S-0041

ASR $0105 P-8132 Y-FFFF X-0100 A-B5 B-4B C-99 S-0041

LDAA $05,X P-8134 Y-FFFF X-0100 A-DA B-4B C-99 S-0041

117

CMPA #$DA P-8136 Y-FFFF X-0100 A-DA B-4B C-94 S-0041

BEQ $813D P-813D Y-FFFF X-0100 A-DA B-4B C-94 S-0041

LSR $05,X P-813F Y-FFFF X-0100 A-DA B-4B C-90 S-0041

LDAA #$6D P-8141 Y-FFFF X-0100 A-6D B-4B C-90 S-0041

CMPA $0105 P-8144 Y-FFFF X-0100 A-6D B-4B C-94 S-0041

BEQ $814B P-814B Y-FFFF X-0100 A-6D B-4B C-94 S-0041

COMA P-814C Y-FFFF X-0100 A-92 B-4B C-99 S-0041

CMPA #$92 P-814E Y-FFFF X-0100 A-92 B-4B C-94 S-0041

BEQ $8155 P-8155 Y-FFFF X-0100 A-92 B-4B C-94 S-0041

COM $0105 P-8158 Y-FFFF X-0100 A-92 B-4B C-99 S-0041

LDAB #$92 P-815A Y-FFFF X-0100 A-92 B-92 C-99 S-0041

CMPB $05,X P-815C Y-FFFF X-0100 A-92 B-92 C-94 S-0041

BEQ $8163 P-8163 Y-FFFF X-0100 A-92 B-92 C-94 S-0041

EORA #$F0 P-8165 Y-FFFF X-0100 A-62 B-92 C-90 S-0041

CMPA #$62 P-8167 Y-FFFF X-0100 A-62 B-92 C-94 S-0041

BEQ $816E P-816E Y-FFFF X-0100 A-62 B-92 C-94 S-0041

CLR $05,X P-8170 Y-FFFF X-0100 A-62 B-92 C-94 S-0041

CLRA P-8171 Y-FFFF X-0100 A-00 B-92 C-94 S-0041

CMPA $0105 P-8174 Y-FFFF X-0100 A-00 B-92 C-94 S-0041

BEQ $817B P-817B Y-FFFF X-0100 A-00 B-92 C-94 S-0041

BSET $05,X $AA P-817E Y-FFFF X-0100 A-00 B-92 C-98 S-0041

LDAA #$AA P-8180 Y-FFFF X-0100 A-AA B-92 C-98 S-0041

CMPA $0105 P-8183 Y-FFFF X-0100 A-AA B-92 C-94 S-0041

BEQ $818A P-818A Y-FFFF X-0100 A-AA B-92 C-94 S-0041

BCLR $05,X $0F P-818D Y-FFFF X-0100 A-AA B-92 C-98 S-0041

LDAA #$A0 P-818F Y-FFFF X-0100 A-A0 B-92 C-98 S-0041

CMPA $05,X P-8191 Y-FFFF X-0100 A-A0 B-92 C-94 S-0041

BEQ $8198 P-8198 Y-FFFF X-0100 A-A0 B-92 C-94 S-0041

LDAA #$45 P-819A Y-FFFF X-0100 A-45 B-92 C-90 S-0041

LDAB #$CD P-819C Y-FFFF X-0100 A-45 B-CD C-98 S-0041

PSHA P-819D Y-FFFF X-0100 A-45 B-CD C-98 S-0040

PSHB P-819E Y-FFFF X-0100 A-45 B-CD C-98 S-003F

CLRA P-819F Y-FFFF X-0100 A-00 B-CD C-94 S-003F

CLRB P-81A0 Y-FFFF X-0100 A-00 B-00 C-94 S-003F

PULB P-81A1 Y-FFFF X-0100 A-00 B-CD C-94 S-0040

PULA P-81A2 Y-FFFF X-0100 A-45 B-CD C-94 S-0041

CMPA #$45 P-81A4 Y-FFFF X-0100 A-45 B-CD C-94 S-0041

BEQ $81AB P-81AB Y-FFFF X-0100 A-45 B-CD C-94 S-0041

CMPB #$CD P-81AD Y-FFFF X-0100 A-45 B-CD C-94 S-0041

BEQ $81B4 P-81B4 Y-FFFF X-0100 A-45 B-CD C-94 S-0041

LDAB #$15 P-81B6 Y-FFFF X-0100 A-45 B-15 C-90 S-0041

STAB $10 P-81B8 Y-FFFF X-0100 A-45 B-15 C-90 S-0041

BRCL $10 $EA $81C1 P-81C1 Y-FFFF X-0100 A-45 B-15 C-90 S-0041

BRSE $10 $05 $81CA P-81CA Y-FFFF X-0100 A-45 B-15 C-90 S-0041

LDAA #$00 P-81CC Y-FFFF X-0100 A-00 B-15 C-94 S-0041

LDAB #$00 P-81CE Y-FFFF X-0100 A-00 B-00 C-94 S-0041

STOP P-81CF Y-FFFF X-0100 A-00 B-00 C-94 S-0041

118

RAM Locations after program run:

0000 FF 30 50 FF 0F A0 FF FF FF FF FF FF FF FF FF FF

0010 15 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0020 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0030 10 EE 50 01 00 FF FF E3 74 D0 06 A5 01 00 FF FF

0040 81 D5 FF E4 E4 6D E3 D4 00 E4 6D E3 E4 E4 6D E3

0100 10 A0 05 A5 FF A0 FF FF FF FF FF FF FF FF FF FF

0110 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0120 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0130 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0140 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0150 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0160 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0170 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0180 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0190 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

01A0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

01B0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

01C0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

01D0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

01E0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

01F0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

119

B.2. Serial Port Test Program

BASE EQU $1000
SCSR EQU $102E ; SERIAL COMMS STATUS REG
SCDR EQU $102F ; SERIAL COMMS DATA REG
SCCR2 EQU $102D
BAUD EQU $102B
DDRD EQU $1009

 ORG $D000
 LDAA #$FE
 LDAA #$02
 STAA DDRD
 LDAA #$00
 STAA BAUD
 LDAA #$0C
 STAA SCCR2
 LDX #BASE ; POINTER TO REGISTER BASE
LOOP: LDAA #$21 ; START WITH ASCII 0X21 TO TRANSMIT
XMIT: STAA SCDR ; TRANSMIT REG A
HERE: BRCLR $2E,X #$40 HERE ; LOOP HERE UNTIL BYTE TRANSMITTED
 INCA ; INC CHAR TO BE TRANSMITTED
 CMPA #$5B ; SEE IF IT'S BEYOND ASCII 0X5A
 BNE XMIT ; NO, SEND THE NEXT ONE
 BRA LOOP ; RESET CHAR TO 0X21

120

APPENDIX C

VISUAL SIMULATION TOOL USER GUIDE

Figure C.1: Main Window of Visual Simulation Software

121

For proper operation of simulation tool, steps mentioned below should be followed

for making simulations.

1. Simulation program can be run by executing sc68hc11.exe file. For executing

sc68hc11.exe, .NET framework should have been installed on the system.

When simulation program is executed, main window that is shown in Figure

C.1 is loaded.

2. Program code can be written in M68HC11 assembly using code editor tool

(can be accessed using “Code Editor” button which is in group box labeled as

“A” Figure C.1.) or any other text editor. Implemented microcontroller has its

ROM located between address locations $D000 - $FFFF. Directives in

program source code should be given appropriately. An example is shown in

Figure C.2 with file name “TESTALL.asm”.

Figure C.2: Code Ediitor Example

122

3. Assembly source file should be saved in the simulator program directory.

4. Saved assembly source file should be converted to .hex format using machine

code generator tool which is located in group box A that is shown in Figure

C.1. At first, assembly file should be selected, then it should be compiled into

.s19 file using “.asm -> .s19” button. This file can be used for downloading the

program into EVBU boards (memory related directives should be compatible

with target EVBU board). For simulation, .s19 file should be converted to .hex

file using “.s19 -> .hex” button.

Figure C.3: Code Generator Example

5. After converting source file to .hex format, this program file should be

downloaded into microcontrollers ROM using “Select HEX File” and

123

“Download HEX to ROM” buttons that are labeled as “1” and “2” in Figure C.4.

Selected .hex file should be in simulator directory.

Figure C.4: Test Environment Example

6. After downloading program file into ROM, user should prepare test

environment for simulation requirements. Behaviour of test bench devices can

be changed by clicking on symbols of the devices. Configuration windows of

124

binary switch, pulse generator and serial monitor are shown in Figures C.6,

C.7 and C.8 respectively. Test bench devices can be enabled / disabled and

their connections to microcontroller ports can be changed using “Test Bench

Configuration” button that is shown in Figure C.4. An example test bench port

configuration window can be found in Figure C.5.

Figure C.5: Test Bench Port Configuration Example

125

Figure C.6: 8-bit Binary Switch Configuration

Figure C.7: Push Button Pulse Generator Configuration

126

Figure C.8: Serial Monitor Configuration

7. When test bench configuration is completed, “Test Bench Config. Completed”

checkbox should be checked (Figure C.4).

8. For running simulation, simulation duration should be selected and “Run”

button should be clicked (Figure C.9). User should click on “OK” button on the

window that will be opened for informing about simulation duration. This

simulator is not a traditional micorocontroller simulator but a simulator that

runs SystemC implementation of microcontroller and presents internal

workings of microcontroller, so simulations with long durations may last very

long. This situation should be considered when simulation duration is being

selected. Simulation execution speed is about 350 instructions / second on a

computer with 1.5 GHz CPU.

Figure C.9: Running Simulation

127

9. After running simulation, program brings simulation results. User can get

information on executed instruction using listviews “Execution Sequence” and

“Instruction Cycles” that are labeled as “E” and “F” respectively in Figure C.1.

Information on internal registers are also shown on main window regions that

are labeled as “B”, “C” and “G”.

10. For viewing RAM or EEPROM locations at a time, a line with desired timing

information should be selected from listviews “E” or “F” and “RAM” or

“EEPROM” buttons that are shown in Figure C.4. should be clicked.

11. Information on test bench modules can be obtained by clicking on module

symbols at any time. As an example, simulation information of “serial monitor”

module can be accessed using “Read Simulation Results” button that is

shown in Figure C.10.

Figure C.10: Simulation Results of Serial Monitor Module

